期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
联合显著性与MRF的SAR建筑物分割算法 被引量:6
1
作者 张磊 王小龙 刘畅 《计算机工程》 CAS CSCD 北大核心 2022年第4期284-291,298,共9页
针对经典马尔可夫随机场(MRF)在进行高分辨率SAR图像分割时存在容易受到斑点噪声干扰等问题,提出一种基于建筑物指数相似度距离及MRF模型(BISD-MRF)的高分辨率SAR建筑物分割算法。基于较复杂SAR场景下建筑物目标可能呈现多种形态结构的... 针对经典马尔可夫随机场(MRF)在进行高分辨率SAR图像分割时存在容易受到斑点噪声干扰等问题,提出一种基于建筑物指数相似度距离及MRF模型(BISD-MRF)的高分辨率SAR建筑物分割算法。基于较复杂SAR场景下建筑物目标可能呈现多种形态结构的问题,设计一种多尺度显著性建筑物指数(MSBI)方案来提取建筑物目标的显著性特征,并通过强度信息重构、纹理显著性提取、频谱显著性信息统计来分别提取不同类型区域的显著性信息,构建适用于SAR建筑物目标的显著性模型。在此基础上,将MSBI值引入到改进的基于改进余弦函数的势函数模型中,利用余弦函数对邻域像素MSBI值进行相似性度量,同时利用特征空间语义信息对像素及其邻域像素标签信息进行有效约束,以提升势函数模型对高分辨率SAR建筑物目标的表征能力。不同平台下的建筑物分割实验结果表明,与MRF、MBI、FRFCM等算法相比,本文算法分割性能平均提升了4.3~10.7个百分点,更适用于较复杂场景下高分辨率SAR建筑物的分割任务。 展开更多
关键词 高分辨率SAR图像 多尺度显著性建筑物指数 改进MRF模型 建筑物提取 势函数
在线阅读 下载PDF
基于卷积神经网络的空心村高分影像建筑物检测方法 被引量:14
2
作者 李政 李永树 +3 位作者 吴玺 刘刚 鲁恒 唐敏 《农业机械学报》 EI CAS CSCD 北大核心 2017年第9期160-165,110,共7页
基于卷积神经网络(CNN)提出了一种适用于空心村高分影像的建筑物自动检测方法,该方法利用多尺度显著性检测来获取包含建筑物信息的显著性区域,然后通过滑动窗口获取显著性区域内目标样本块,再将这些样本块输入训练好的CNN并结合SVM来实... 基于卷积神经网络(CNN)提出了一种适用于空心村高分影像的建筑物自动检测方法,该方法利用多尺度显著性检测来获取包含建筑物信息的显著性区域,然后通过滑动窗口获取显著性区域内目标样本块,再将这些样本块输入训练好的CNN并结合SVM来实现分类。为检验方法有效性,选取高分影像进行实验,结果表明,显著性检测能够有效地获取主要目标,减弱其他无关目标的影响,降低数据冗余;卷积神经网络能够自动学习高层次的特征,基于CNN对高分影像进行建筑物检测,分类准确度可以达到97.6%,表明该方法具有较好的鲁棒性和有效性。 展开更多
关键词 空心村 建筑物检测 卷积神经网络 高分影像 多尺度显著检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部