期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型
1
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
基于MCSANet网络的运动想象脑电分类
2
作者 杜江 毕峰 《现代电子技术》 北大核心 2025年第16期67-74,共8页
针对传统深度学习方法在解码脑电信号时可能存在的特征挖掘不足及利用不充分问题,提出一种并行多尺度时间卷积结合滑动窗口技术与注意力机制的深度学习模型,即MCSANet。首先,利用并行多尺度时间卷积有效捕获脑电信号在不同时间尺度下的... 针对传统深度学习方法在解码脑电信号时可能存在的特征挖掘不足及利用不充分问题,提出一种并行多尺度时间卷积结合滑动窗口技术与注意力机制的深度学习模型,即MCSANet。首先,利用并行多尺度时间卷积有效捕获脑电信号在不同时间尺度下的时域特征和空域特征;再利用滑动窗口切片技术对特征序列进行划分,增加特征序列样本数;之后,每部分特征序列样本都通过多头自注意力机制分配权重并加以融合,进一步突显出更多关键特征;最后,全连接层和SoftMax层共同协作,对捕获到的特征进行深入学习和精准分类。为了验证该模型的性能,在BCICIV-2a数据集上进行了详尽的实验分析。结果表明,所有受试者的平均分类准确率都高达81.69%,验证了所提出的方法在挖掘脑电深层潜在特征、提升运动想象脑电分类性能方面的有效性。 展开更多
关键词 脑机接口 脑电信号 并行多尺度时间卷积 滑动窗口切片技术 多头自注意力机制 消融实验
在线阅读 下载PDF
多尺度特征提取与非线性融合的综合能源系统多元负荷短期预测 被引量:7
3
作者 付文龙 章轩瑞 +3 位作者 张海荣 刘嘉睿 缪书唯 李丹 《电力系统及其自动化学报》 CSCD 北大核心 2023年第12期89-99,共11页
为提高综合能源系统多元负荷短期预测的精度,提出一种基于多尺度特征提取与非线性融合的综合能源系统多元负荷短期预测方法。首先,采用皮尔逊相关系数对气象数据进行关联因子优选;然后,通过嵌入式分解模块将输入的时间序列分解为周期分... 为提高综合能源系统多元负荷短期预测的精度,提出一种基于多尺度特征提取与非线性融合的综合能源系统多元负荷短期预测方法。首先,采用皮尔逊相关系数对气象数据进行关联因子优选;然后,通过嵌入式分解模块将输入的时间序列分解为周期分量和趋势分量,并将分解后得到的输入矩阵并行送入到具有不同尺度卷积核的时间卷积网络中,进行多尺度特征提取;接着,将多尺度时间卷积网络输出的特征向量输入到各自对应的注意力机制,以进行全局信息的学习与融合;最后,采用自适应非线性融合模块对各注意力机制的输出进行非线性融合,得到最终多元负荷预测结果。实验结果表明,所提方法具有较好的预测性能及泛化性。 展开更多
关键词 综合能源系统 多元负荷预测 多尺度时间卷积网络 嵌入式分解 自适应非线性融合
在线阅读 下载PDF
基于联邦学习的跨被试癫痫发作检测方法
4
作者 张艳丽 孙一菲 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期645-651,共7页
提出一种基于联邦学习的跨被试癫痫发作检测方法,以解决由于数据类型不平衡和癫痫患者之间数据分布差异显著导致的深度检测模型训练数据不足和泛化性能低的问题.建立癫痫发作检测的联邦学习框架,聚合多个训练参与方的脑电图数据;设计多... 提出一种基于联邦学习的跨被试癫痫发作检测方法,以解决由于数据类型不平衡和癫痫患者之间数据分布差异显著导致的深度检测模型训练数据不足和泛化性能低的问题.建立癫痫发作检测的联邦学习框架,聚合多个训练参与方的脑电图数据;设计多尺度时间卷积网络作为客户端局部模型,通过客户端局部模型的训练和参数聚合协作训练全局模型;为避免联邦训练过程中参数量过大,用量化压缩技术提高模型的传输效率.在CHB-MIT头皮脑电图数据中评估联邦学习全局模型的跨被试癫痫发作检测性能,取得平均71.21%的灵敏度和83.99%的准确率.结果表明,联邦学习在不交换各客户端隐私数据的前提下,能够融合局部模型参数生成独立于患者个体的公共检测模型,为跨被试癫痫发作检测提供有效方法. 展开更多
关键词 脑电信号 癫痫发作检测 联邦学习 多尺度时间卷积网络
在线阅读 下载PDF
多尺度门控时空增强的唇语识别方法
5
作者 马金林 郭兆伟 +1 位作者 马自萍 吕鑫 《计算机辅助设计与图形学学报》 2025年第7期1228-1238,共11页
针对唇语识别模型中的普通卷积对唇部形变缺乏鲁棒性和不能有效地提取时间信息的问题,提出时空增强与多尺度时间卷积网络(MSTCN)结合的唇语识别方法.首先设计沙漏型卷积块(FCB),增强网络对唇部形变的鲁棒性;然后使用门控时移融合(GSF)... 针对唇语识别模型中的普通卷积对唇部形变缺乏鲁棒性和不能有效地提取时间信息的问题,提出时空增强与多尺度时间卷积网络(MSTCN)结合的唇语识别方法.首先设计沙漏型卷积块(FCB),增强网络对唇部形变的鲁棒性;然后使用门控时移融合(GSF)模块提高前端网络的时间信息提取能力;再基于FCB和GSF设计混合3D和2D卷积的时空增强网络STABNet;最后将STABNet作为前端网络,MSTCN作为后端网络,设计唇语识别模型.在LRW数据集上的实验结果表明,与基线模型相比,所提方法的准确率提升4.15个百分点,达到89.45%,而模型的参数量仅增加3.17M.在GRID数据集上准确率达到97.45%,超过大部分对比模型. 展开更多
关键词 唇语识别 多尺度时间卷积网络 时空增强 门控时移融合模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部