期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多尺度高阶奇异谱熵和GA-VPMCD方法在转子故障智能诊断中的应用
1
作者 罗颂荣 程军圣 杨宇 《中国机械工程》 EI CAS CSCD 北大核心 2014年第21期2912-2917,2924,共7页
首先,针对转子故障振动信号的非高斯、非线性特征,提出了多尺度高阶奇异谱熵的概念,并将其用于转子故障特征提取;然后,针对新的小样本多分类识别方法——基于变量预测模型分类识别的模型选择问题,结合融合诊断思想和遗传算法,提出了GA-V... 首先,针对转子故障振动信号的非高斯、非线性特征,提出了多尺度高阶奇异谱熵的概念,并将其用于转子故障特征提取;然后,针对新的小样本多分类识别方法——基于变量预测模型分类识别的模型选择问题,结合融合诊断思想和遗传算法,提出了GA-VPMCD分类识别方法。最后提出了基于多尺度高阶奇异谱熵和GA-VPMCD的转子故障诊断方法。试验结果验证了该方法的有效性和优越性。 展开更多
关键词 多尺度高阶奇异 基于变量预测模型分类识别 遗传算法 转子系统 故障诊断
在线阅读 下载PDF
基于RIME-VMD的高速列车横向减振器故障诊断
2
作者 秦永峰 李刚 +1 位作者 齐金平 王建帅 《铁道科学与工程学报》 北大核心 2025年第3期942-953,共12页
为解决变分模态分解(VMD)在高速列车横向减振器故障诊断中特征提取较为困难的问题,提出一种基于霜冰算法(RIME)以最小包络熵作为适应度函数优化变分模态分解(VMD)的特征提取方法。首先,使用霜冰算法(RIME)优化VMD在不同故障状态下模态(I... 为解决变分模态分解(VMD)在高速列车横向减振器故障诊断中特征提取较为困难的问题,提出一种基于霜冰算法(RIME)以最小包络熵作为适应度函数优化变分模态分解(VMD)的特征提取方法。首先,使用霜冰算法(RIME)优化VMD在不同故障状态下模态(IMF)分量的个数和惩罚因子的最优参数组合;其次,计算各个IMFs分量的峭度值与相关性系数,再分别选取峭度值较大的前4阶IMF分量,并在峭度值较大的4个IMFs分量中选取相关性系数较高的前3阶IMFs进行信号重构降噪;最后,计算多尺度的奇异熵、样本熵、排列熵作为故障特征值,并结合t分布随机近邻嵌入(t-SNE)算法降维去除冗余特征信息,将降维融合后的特征矩阵逐一输入到支持向量机(SVM)中,从而实现对高速列车横向减振器不同故障部位的识别。仿真实验结果表明:相较于灰狼算法(GWO)优化变分模态分解(VMD)的方法,RIME-VMD方法利用霜冰算法高效的搜索与开发能力,可以更快速寻得高速列车不同工况下,变分模态分解中分解层数和惩罚因子参数的全局最优组合,提高了VMD分解信号的鲁棒性,采用信号重构的方法可以有效提取故障特征,实现高速列车横向减振器故障的高效、准确识别。原始变分模态分解(VMD)方法虽然分解速度较快,但原始VMD参数的人工试错成本更高,不能满足高速列车故障诊断的要求。研究结果可为高速列车横向减振器故障诊断和安全运营进一步优化提供参考。 展开更多
关键词 转向架 变分模态分解 霜冰算法 故障诊断 多尺度奇异熵
在线阅读 下载PDF
计及高阶统计量和深度学习的抗噪孤岛检测方法 被引量:11
3
作者 孔祥瑞 严正 +1 位作者 徐潇源 谢伟 《电力系统自动化》 EI CSCD 北大核心 2019年第1期58-64,185,共8页
分布式电源持续的规模化接入给微电网运行引入了显著的不确定性与噪声,增加了配电网监视的难度。而孤岛检测设备易受电网扰动干扰而误动作,导致分布式电源被切除运行,孤岛检测装置必须能够在噪声环境中准确区分判别扰动与孤岛情形。文... 分布式电源持续的规模化接入给微电网运行引入了显著的不确定性与噪声,增加了配电网监视的难度。而孤岛检测设备易受电网扰动干扰而误动作,导致分布式电源被切除运行,孤岛检测装置必须能够在噪声环境中准确区分判别扰动与孤岛情形。文中将基于多尺度高阶奇异谱熵的深度学习概念应用于孤岛检测问题,提出一种结合经验模态分解与高阶奇异谱熵的新型混合深度学习架构。作为经验模态分解后的信号处理方法,多尺度高阶奇异谱熵结合多分辨率高阶统计分析与谱分析并以熵值作为特征提取输出,进而通过深度学习架构对所提取的孤岛与扰动特征量进行训练及测试。仿真结果表明所提方法能够实现孤岛的准确检测,从而避免分布式电源退出运行。 展开更多
关键词 孤岛检测 高阶统计量 经验模态分解 多尺度奇异 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部