期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度卷积神经网络的屋顶光伏建筑轮廓提取方法研究
1
作者
胡家宇
白建波
+1 位作者
肖宇航
严家乐
《可再生能源》
北大核心
2025年第7期887-895,共9页
针对我国整县分布式光伏的推进,屋顶光伏可利用潜力评估成为政策落实的前提条件。高效准确获取区域内屋顶的轮廓,是评估区域内光伏可利用潜力的最关键因素。现有屋顶光伏建筑物轮廓提取方法忽略了图像的多尺度特征,导致提取建筑物轮廓...
针对我国整县分布式光伏的推进,屋顶光伏可利用潜力评估成为政策落实的前提条件。高效准确获取区域内屋顶的轮廓,是评估区域内光伏可利用潜力的最关键因素。现有屋顶光伏建筑物轮廓提取方法忽略了图像的多尺度特征,导致提取建筑物轮廓模糊及精度不高等弊端。文章提出了多尺度增强卷积耦合注意力调节的建筑物轮廓提取方法。首先,利用多扩张率的空洞卷积构造多尺度增强卷积模块,并将其融入到U_Net网络中,用来采集不同感受野下的建筑特征,这样提取的结果能更全面地表达建筑物轮廓的整体和细节特征;然后,将注意力机制引入到U_Net网络中参与跳跃连接,更为精确地提取建筑物轮廓;最后,利用交叉熵损失函数和Dice系数损失函数,构造复合损失函数,训练所提模型,提取建筑物轮廓。实验结果显示,与其他建筑物轮廓提取算法相比,所提算法不仅对建筑物轮廓的提取精度较高,而且对不同尺度的建筑物轮廓提取也具有较好的效果,说明所提算法能够有效提升建筑物轮廓提取精度,提高光伏可利用潜力评估效率。在分布式光伏整县推进背景下,该方法对于推动GIS及人工智能技术在光伏资源评估中的应用具有重要的参考价值。
展开更多
关键词
屋顶光伏
建筑物轮廓提取
多尺度增强卷积模块
注意力机制
在线阅读
下载PDF
职称材料
题名
基于多尺度卷积神经网络的屋顶光伏建筑轮廓提取方法研究
1
作者
胡家宇
白建波
肖宇航
严家乐
机构
河海大学机电工程学院
河海大学新能源学院
出处
《可再生能源》
北大核心
2025年第7期887-895,共9页
基金
国家重点研发计划(2022YFB4201000)。
文摘
针对我国整县分布式光伏的推进,屋顶光伏可利用潜力评估成为政策落实的前提条件。高效准确获取区域内屋顶的轮廓,是评估区域内光伏可利用潜力的最关键因素。现有屋顶光伏建筑物轮廓提取方法忽略了图像的多尺度特征,导致提取建筑物轮廓模糊及精度不高等弊端。文章提出了多尺度增强卷积耦合注意力调节的建筑物轮廓提取方法。首先,利用多扩张率的空洞卷积构造多尺度增强卷积模块,并将其融入到U_Net网络中,用来采集不同感受野下的建筑特征,这样提取的结果能更全面地表达建筑物轮廓的整体和细节特征;然后,将注意力机制引入到U_Net网络中参与跳跃连接,更为精确地提取建筑物轮廓;最后,利用交叉熵损失函数和Dice系数损失函数,构造复合损失函数,训练所提模型,提取建筑物轮廓。实验结果显示,与其他建筑物轮廓提取算法相比,所提算法不仅对建筑物轮廓的提取精度较高,而且对不同尺度的建筑物轮廓提取也具有较好的效果,说明所提算法能够有效提升建筑物轮廓提取精度,提高光伏可利用潜力评估效率。在分布式光伏整县推进背景下,该方法对于推动GIS及人工智能技术在光伏资源评估中的应用具有重要的参考价值。
关键词
屋顶光伏
建筑物轮廓提取
多尺度增强卷积模块
注意力机制
Keywords
rooftop photovoltaic
building contour extraction
multi-scale enhanced convolutional module
attention mechanism
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度卷积神经网络的屋顶光伏建筑轮廓提取方法研究
胡家宇
白建波
肖宇航
严家乐
《可再生能源》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部