期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MSC-ECA-Transformer的矿用皮带输送电机剩余寿命预测研究
1
作者
丁榕
邱成鹏
王帅
《金属矿山》
北大核心
2025年第8期150-157,共8页
矿用皮带输送电机剩余寿命预测是保障矿山安全生产的关键技术之一。针对现有预测模型在特征提取、时序依赖性建模及计算复杂度方面的不足,利用变频一体机上的多源传感器系统采集矿用皮带输送电机运行数据,并基于MSC-ECA-Transformer模...
矿用皮带输送电机剩余寿命预测是保障矿山安全生产的关键技术之一。针对现有预测模型在特征提取、时序依赖性建模及计算复杂度方面的不足,利用变频一体机上的多源传感器系统采集矿用皮带输送电机运行数据,并基于MSC-ECA-Transformer模型进行剩余寿命预测。该模型在Transformer主干网络中嵌入了多尺度因果膨胀卷积(MSC)和高效通道注意力(ECA)模块,通过MSC构建多级时序特征提取,解决传统自注意力机制对设备渐进式退化模式多尺度特征捕捉不足的问题。同时引入ECA模块实现特征通道的动态权重分配,增强故障敏感特征的显著性表达。试验表明,MSC-ECA-Transformer模型在预测精度和稳定性上表现优异,改进后模型的平均绝对误差(MAE)以及均方根误差(RMSE)分别为0.0851以及0.0918,与Transformer模型相比,分别降低34.0%及36.2%,为矿用电机剩余寿命预测提供了技术支撑。
展开更多
关键词
皮带运输机
电机
寿命预测
MSC-ECA-Transformer
多尺度因果膨胀卷积
时间序列
在线阅读
下载PDF
职称材料
题名
基于MSC-ECA-Transformer的矿用皮带输送电机剩余寿命预测研究
1
作者
丁榕
邱成鹏
王帅
机构
中煤资源发展集团有限公司
中煤信息技术(北京)有限公司
出处
《金属矿山》
北大核心
2025年第8期150-157,共8页
基金
陕西省重点研发计划(编号:2023-YBGY-367)
国家自然科学基金青年项目(编号:51704229)。
文摘
矿用皮带输送电机剩余寿命预测是保障矿山安全生产的关键技术之一。针对现有预测模型在特征提取、时序依赖性建模及计算复杂度方面的不足,利用变频一体机上的多源传感器系统采集矿用皮带输送电机运行数据,并基于MSC-ECA-Transformer模型进行剩余寿命预测。该模型在Transformer主干网络中嵌入了多尺度因果膨胀卷积(MSC)和高效通道注意力(ECA)模块,通过MSC构建多级时序特征提取,解决传统自注意力机制对设备渐进式退化模式多尺度特征捕捉不足的问题。同时引入ECA模块实现特征通道的动态权重分配,增强故障敏感特征的显著性表达。试验表明,MSC-ECA-Transformer模型在预测精度和稳定性上表现优异,改进后模型的平均绝对误差(MAE)以及均方根误差(RMSE)分别为0.0851以及0.0918,与Transformer模型相比,分别降低34.0%及36.2%,为矿用电机剩余寿命预测提供了技术支撑。
关键词
皮带运输机
电机
寿命预测
MSC-ECA-Transformer
多尺度因果膨胀卷积
时间序列
Keywords
belt conveyer
electrical machine
residual life prediction
MSC-ECA-Transformer
multiscale causal dilation convolution
time series
分类号
TD687 [矿业工程—矿山机电]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MSC-ECA-Transformer的矿用皮带输送电机剩余寿命预测研究
丁榕
邱成鹏
王帅
《金属矿山》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部