期刊文献+
共找到315篇文章
< 1 2 16 >
每页显示 20 50 100
基于运动阵列微波成像与多尺度可变形卷积网络的引信目标识别方法
1
作者 韩燕文 闫晓鹏 +2 位作者 高晓峰 伊光华 代健 《兵工学报》 北大核心 2025年第3期214-224,共11页
针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)... 针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)的引信目标识别方法。在充分分析引信运动过程中回波相位变化规律的基础上建立FMCW运动阵列天线模型,通过运动合成扩充引信天线虚拟阵元数,大幅度提升引信方位向分辨率,实现目标距离-方位的二维高分辨成像。同时,深入分析弹目交会过程中由于目标位置、姿态、距离等状态变化形成的图像多尺度特性,构建MSDCN目标识别模型,提高引信对复杂动态交会场景下目标成像多尺度特性的自适应识别能力。实验结果表明,该方法能够显著提高引信方位分辨能力,在不同目标场景下均取得较好的成像和识别效果,对典型目标多尺度像识别准确率达到94%,-6 dB信噪比时目标识别准确率仍能达到88%。 展开更多
关键词 引信 调频连续波 运动阵列 距离-方位二维像 多尺度可变形卷积网络 目标识别
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
2
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
利用可选择多尺度图卷积网络的骨架行为识别
3
作者 曹毅 李杰 +2 位作者 叶培涛 王彦雯 吕贤海 《电子与信息学报》 北大核心 2025年第3期839-849,共11页
针对目前骨架行为识别方法忽视骨架关节点多尺度依赖关系和无法合理利用卷积核进行时间建模的问题,该文提出了一种可选择多尺度图卷积网络(SMS-GCN)的行为识别模型。首先,介绍了人体骨架图的构建原理和通道拓扑细化图卷积网络的结构;其... 针对目前骨架行为识别方法忽视骨架关节点多尺度依赖关系和无法合理利用卷积核进行时间建模的问题,该文提出了一种可选择多尺度图卷积网络(SMS-GCN)的行为识别模型。首先,介绍了人体骨架图的构建原理和通道拓扑细化图卷积网络的结构;其次,构建成对关节邻接矩阵和多关节邻接矩阵以生成多尺度通道拓扑细化邻接矩阵,并引入图卷积网络,进一步提出多尺度图卷积(MS-GC)模块,以期实现对骨架关节点的多尺度依赖关系的建模;然后,基于多尺度时序卷积和可选择大核网络,提出可选择多尺度时序卷积(SMS-TC)模块,以期实现对有用的时间上下文特征的充分提取,同时结合MS-GC和SMS-TC模块,进而提出可选择多尺度图卷积网络模型并在多支流数据输入下进行训练;最后,在NTU-RGB+D和NTU-RGB+D 120数据集上进行大量实验,实验结果表明,该模型能够捕获更多的关节特征和学习有用的时间信息,具有优异的准确率和泛化能力。 展开更多
关键词 骨架行为识别 卷积网络 多尺度通道拓扑细化邻接矩阵 可选择多尺度时序卷积 可选择多尺度卷积网络
在线阅读 下载PDF
多尺度卷积神经网络融合Transformer的竹材缺陷识别方法 被引量:1
4
作者 杨松 张锐 朱良宽 《林业工程学报》 CSCD 北大核心 2024年第5期126-133,共8页
在竹材缺陷识别的研究中,竹片形状、缺陷部位颜色深浅及裂纹大小差异都是制约模型识别准确率的关键。针对上述问题,提出一种适用于中小数据集的多尺度卷积神经网络融合Transformer的竹材缺陷识别方法,以更好地提高竹材缺陷识别的准确率... 在竹材缺陷识别的研究中,竹片形状、缺陷部位颜色深浅及裂纹大小差异都是制约模型识别准确率的关键。针对上述问题,提出一种适用于中小数据集的多尺度卷积神经网络融合Transformer的竹材缺陷识别方法,以更好地提高竹材缺陷识别的准确率。该方法在卷积神经网络的主干上进行改进,从获取不同尺度语义信息的角度出发,首先利用卷积神经网络在不同尺度的特征图上捕捉图像局部语义信息,然后将不同尺度的语义特征映射为特征符号,同时引入Sinkhorn分词器对不同阶段的卷积神经网络特征符号化以减少特征冗余,再通过Transformer对特征符号之间的关系进行建模以学习图像全局语义信息。试验结果表明,与VGG16、ResNet50、DenseNet121、ViT这4种深度学习模型相比,基于多尺度卷积神经网络融合Transformer的方法能够更高效地提高竹材缺陷识别模型的性能,在竹材缺陷图像数据集上的平均识别准确率达到了99.13%。该方法识别速度更快、精度更高,且具有良好的鲁棒性,为竹材缺陷的实时自动识别提供了新思路,同时也验证了所提出方法的有效性。 展开更多
关键词 竹材缺陷识别 多尺度 卷积神经网络 TRANSFORMER Sinkhorn分词器
在线阅读 下载PDF
采用多尺度自适应选择卷积神经网络的轴承故障诊断研究 被引量:4
5
作者 张玺君 尚继洋 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期127-135,共9页
针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征... 针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征,合并为初始特征;构建多尺度自适应选择卷积块,提取不同尺度的特征,利用改进的注意力机制自适应调整不同尺度的特征权重,加入残差连接,防止模型退化;通过分类器完成轴承故障诊断。在凯斯西储大学轴承数据集和XJTU-SY轴承数据集上的实验结果表明:在模型改进实验中,与没有改进注意力机制的模型相比,所提模型的轴承故障诊断准确率提升了1.98%;在不同信噪比的噪声干扰环境中,所提模型的轴承故障诊断准确率均高于93%。 展开更多
关键词 轴承故障诊断 卷积神经网络 自适应融合 注意力机制 多尺度特征
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:1
6
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
卷积神经网络与视觉Transformer联合驱动的跨层多尺度融合网络高光谱图像分类方法 被引量:3
7
作者 赵凤 耿苗苗 +2 位作者 刘汉强 张俊杰 於俊 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2237-2248,共12页
高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复... 高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复杂多样的结构,且不同地物之间存在尺度差异。现有的二者结合的方法通常对多尺度地物目标的纹理和结构信息的提取能力有限。为了克服上述局限性,该文提出CNN与视觉Transformer联合驱动的跨层多尺度融合网络HSI分类方法。首先,从结合CNN与视觉Transformer的角度出发,设计了跨层多尺度局部-全局特征提取模块分支,其主要由卷积嵌入的视觉Transformer和跨层特征融合模块构成。具体来说,卷积嵌入的视觉Transformer通过深度融合多尺度CNN与视觉Transformer实现了多尺度局部-全局特征信息的有效提取,从而增强网络对不同尺度地物的关注。进一步地,跨层特征融合模块深度聚合了不同层次的多尺度局部-全局特征信息,以综合考虑地物的浅层纹理信息和深层结构信息。其次,构建了分组多尺度卷积模块分支来挖掘HSI中密集光谱波段潜在的多尺度特征。最后,为了增强网络对HSI中局部波段细节和整体光谱信息的挖掘,设计了残差分组卷积模块对局部-全局光谱特征进行提取。Indian Pines, Houston 2013和Salinas Valley 3个HSI数据集上的实验结果证实了所提方法的有效性。 展开更多
关键词 高光谱图像分类 卷积神经网络 视觉Transformer 多尺度特征 融合网络
在线阅读 下载PDF
基于融合卷积神经网络的车辆多目标检测方法
8
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪 被引量:1
9
作者 陈仁祥 潘升 +2 位作者 杨黎霞 王建西 夏天 《铁道学报》 EI CAS CSCD 北大核心 2024年第5期123-131,共9页
针对钢轨表面缺陷图像降噪依赖人工设置滤波参数和缺陷边缘模糊的问题,提出基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪方法。首先采用深层网络中的多尺度卷积自动提取含噪图像的特征,使其不依赖于人工设置滤波参数,... 针对钢轨表面缺陷图像降噪依赖人工设置滤波参数和缺陷边缘模糊的问题,提出基于注意力引导多尺度降噪卷积神经网络的钢轨表面缺陷图像降噪方法。首先采用深层网络中的多尺度卷积自动提取含噪图像的特征,使其不依赖于人工设置滤波参数,并克服单尺度卷积特征不够精细导致缺陷边缘模糊的问题;其次利用跳跃连接融合网络深层特征和浅层特征,强化浅层特征影响,克服因网络加深导致浅层特征被忽略的问题,使特征更充分;然后利用注意力机制调节特征在空间不同位置的权重,筛选出能表征噪声的特征,获得噪声信息;最后通过重建模块去除含噪图像中的噪声,实现端到端的降噪。试验结果从定性和定量角度证明所提方法不仅降噪效果更好,且更有效地保留了缺陷边缘信息,为缺陷精确分割提供条件。 展开更多
关键词 钢轨表面缺陷 图像降噪 卷积神经网络 多尺度特征
在线阅读 下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别
10
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码器 性能衰退指标 多尺度残差收缩网络 寿命状态识别
在线阅读 下载PDF
基于多尺度卷积神经网络和注意力机制的模拟电路早期故障诊断方法 被引量:2
11
作者 徐欣 侯成凯 《电子器件》 CAS 2024年第4期929-934,共6页
模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采... 模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采用小波变换得到脉冲响应信号的多尺度分量,利用设计好的MS-FACNN网络自动提取更加全面且高可分性故障特征,并实现故障模式识别。此外,采用高效通道注意力(ECA)聚焦故障高相关性特征,过滤低相关性的冗余信息,进一步提升模型特征提取能力。实验结果表明,相比传统方法,所提方法具有更强的故障特征提取能力,对四运放双二阶高通滤波器早期故障诊断的准确率达到99.18%。 展开更多
关键词 模拟电路 早期故障诊断 小波变换 多尺度卷积神经网络 有效通道注意力
在线阅读 下载PDF
基于多尺度循环卷积神经网络的卫星通信信号识别 被引量:1
12
作者 袁中群 陈卫 +2 位作者 梁栋 王成东 张恒 《中国电子科学研究院学报》 2024年第3期219-227,共9页
针对目前的卫星通信调制分类算法大多忽略了不同尺度特征的融合问题,提出了一个多尺度循环卷积神经网络模型。该网络结构整合了双分支设计、压缩与激励策略、多尺度残差网络以及长短期记忆网络,旨在全面捕捉信号的多尺度特性并有效建模... 针对目前的卫星通信调制分类算法大多忽略了不同尺度特征的融合问题,提出了一个多尺度循环卷积神经网络模型。该网络结构整合了双分支设计、压缩与激励策略、多尺度残差网络以及长短期记忆网络,旨在全面捕捉信号的多尺度特性并有效建模时间序列。实验结果表明:文中所提模型在0 dB以上的识别准确率达到了97.1%,在13 dB时更进一步提升至99%;与经典的CNN2模型和LSTM2模型相比,在识别准确率上展现了显著优势,且相较于识别性能接近的CLDNN2模型,参数量减少了47.7%,训练时间缩短了68%;尤其是QAM16和QAM64两种调制样式识别准确率显著上升并且保持较高水平,这也进一步证实了模型多尺度特征融合策略的有效性。 展开更多
关键词 自动调制识别 多尺度特征融合 卷积神经网络 深度学习
在线阅读 下载PDF
基于粒子群优化卷积神经网络的深基坑变形预测方法 被引量:1
13
作者 赵颍 《建筑技术开发》 2024年第3期162-164,共3页
以华润阜阳中心项目五期总承包项目为研究对象,基于粒子群优化的卷积神经网络法对深基坑围护结构的水平位移和地表沉降进行预测,随着监测时间的增加,深基坑围护结构水平位移量和地表沉降量的预测值与实测值均具有一致的变化规律;与实测... 以华润阜阳中心项目五期总承包项目为研究对象,基于粒子群优化的卷积神经网络法对深基坑围护结构的水平位移和地表沉降进行预测,随着监测时间的增加,深基坑围护结构水平位移量和地表沉降量的预测值与实测值均具有一致的变化规律;与实测值相比,预测围护结构水平位移量的均方根误差为3.89%,平均百分比误差为5.92%,预测地表沉降量的均方根误差为4.53%,平均百分比误差为3.96%,均小于8%的误差限制要求,表明基于粒子群优化的卷积神经网络深基坑变形具有较高的预测精度。 展开更多
关键词 建筑工程 深基坑 变形预测 卷积神经网络 粒子群优化
在线阅读 下载PDF
基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割算法
14
作者 党宁 李世峰 于坤義 《电子技术应用》 2025年第4期66-71,共6页
无人机在光伏系统的巡检过程中需要对光伏组件的缺陷进行准确和快速识别,为此提出了一种基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络。首先在传统的U-Net网络每个Stage加入多尺度伸缩卷积模块,从而对光伏组件缺陷进行分割,P... 无人机在光伏系统的巡检过程中需要对光伏组件的缺陷进行准确和快速识别,为此提出了一种基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络。首先在传统的U-Net网络每个Stage加入多尺度伸缩卷积模块,从而对光伏组件缺陷进行分割,PA达到了98.61%,与传统U-Net、FCN网络进行对比分析,准确率分别提高了0.32%和1.17%,算法消耗时间0.054 s,相较于对比的分割算法提高了0.006 s~0.013 s;然后将分割后的缺陷掩码mask和原图进行与操作,最后通过轻量级网络MobileNetV3对光伏组件缺陷(热斑、裂缝、鸟粪)进行检测并分类,精确率达到了98.82%,与SqueezeNet、ShuffleNet V2和GhostNet网络进行对比,分别提高了0.43%、1.08%和0.8%,平均检测时间0.026s,相较于对比的检测算法提高了0.002s~0.036s。实验结果表明基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络具有较高的准确率和识别速率。 展开更多
关键词 光伏组件缺陷 注意力机制 多尺度伸缩卷积 U-net网络 MobileNetV3网络
在线阅读 下载PDF
基于工业声信号处理的卷积神经网络建模方法研究
15
作者 张鹏 《电声技术》 2025年第1期1-4,共4页
研究卷积神经网络(Convolutional Neural Network,CNN)在工业声信号处理中的应用,通过设计多尺度卷积核与注意力机制,实现工业设备的智能故障诊断。采用小波包降噪和梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)特征提取... 研究卷积神经网络(Convolutional Neural Network,CNN)在工业声信号处理中的应用,通过设计多尺度卷积核与注意力机制,实现工业设备的智能故障诊断。采用小波包降噪和梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)特征提取,结合多尺度卷积核和注意力机制构建CNN模型。实验结果表明,该模型在离心压缩机故障诊断中的准确率高达96.7%,显著优于传统MFCC+支持向量机(Support Vector Machine,SVM)和基础MFCC+CNN方法。 展开更多
关键词 工业声信号 卷积神经网络(CNN) 多尺度卷积 注意力机制
在线阅读 下载PDF
小样本下多尺度卷积关系网络的轴承故障诊断方法
16
作者 郝伟 丁昆 +3 位作者 暴长春 贺婷婷 陈仰辉 张楷 《中国测试》 CAS 北大核心 2024年第3期160-168,共9页
尽管工业条件下可获取大量轴承状态监测数据,但其价值密度低且多为正常状态,可利用的不同类型故障数据较少。针对少样本条件下难以实现高准确率轴承故障诊断的问题,提出一种基于多尺度卷积关系网络的轴承故障诊断方法。该方法首先利用... 尽管工业条件下可获取大量轴承状态监测数据,但其价值密度低且多为正常状态,可利用的不同类型故障数据较少。针对少样本条件下难以实现高准确率轴承故障诊断的问题,提出一种基于多尺度卷积关系网络的轴承故障诊断方法。该方法首先利用关系网络建立已标记样本之间的对比关系模型;其次,在网络的第一层利用多个大小不同卷积核提取特征并进行特征融合,以增强模型在数据稀缺的条件下对丰富性和互补性故障特征的提取能力;此外,考虑交叉熵损失函数,以提升模型对不同故障类型中判别性特征的提取能力。在帕德博恩大学轴承数据集下,仅利用50条样本训练模型,所提方法相较于WDCNN、SECNN、孪生网络、原型网络和关系网络对1000条无标记样本的平均测试准确率分别提升33.66%,28.63%,7.62%,7.82%和4.21%。此外,对机车轴承数据集添加SNR为-1 dB的高斯白噪声以模拟强噪声干扰环境,所提方法仅利用20条训练样本对1200条测试样本达到89.83%的较高诊断精度。实验结果显示,在小样本训练条件下,所提方法能够有效提升模型的泛化、抗噪和辨识能力。 展开更多
关键词 轴承故障诊断 小样本 关系网络 多尺度卷积网络
在线阅读 下载PDF
基于多尺度卷积神经网络的绩效数据特征提取方法
17
作者 牛娅敏 《电子设计工程》 2024年第17期31-35,共5页
针对传统医疗机构绩效评估算法存在的主观性强、数据特征提取能力差的缺点,文中基于多尺度卷积神经网络提出一种绩效数据特征提取模型。该模型对传统卷积神经网络进行改进,使用空间化可提升效率的方法构建了胶囊网络,并使用多种尺寸不... 针对传统医疗机构绩效评估算法存在的主观性强、数据特征提取能力差的缺点,文中基于多尺度卷积神经网络提出一种绩效数据特征提取模型。该模型对传统卷积神经网络进行改进,使用空间化可提升效率的方法构建了胶囊网络,并使用多种尺寸不同的卷积核对数据进行训练,从而保证了特征提取的全面性。在数据训练过程中,使用熵权法对各参数指标进行权重确定,并用麻雀搜索算法进行模型参数优化。在实验测试中,参数优化后的模型预测准确率更高,在所有对比算法中,所提算法的MAE、MAPE、RMSE等误差指标最低,迭代次数也仅为7次,表明模型具有最优性能的同时训练速度也较快。 展开更多
关键词 卷积神经网络 多尺度卷积 熵权法 麻雀搜索算法 胶囊网络 绩效数据分析
在线阅读 下载PDF
基于多尺度卷积神经网络屏幕内容图像无参考质量评价方法
18
作者 张巍 《辽宁工业大学学报(自然科学版)》 2024年第5期286-291,共6页
针对屏幕内容图像无参考质量评价问题,提出了一种基于深度学习的多尺度评价方法。利用多尺度神经网络提取屏幕内容图像在不同尺度下的表达特征,模拟人眼视觉系统对不同尺度图像的感受特性;将多尺度图像特征进行融合,得到图像质量的综合... 针对屏幕内容图像无参考质量评价问题,提出了一种基于深度学习的多尺度评价方法。利用多尺度神经网络提取屏幕内容图像在不同尺度下的表达特征,模拟人眼视觉系统对不同尺度图像的感受特性;将多尺度图像特征进行融合,得到图像质量的综合特征,并编码成特征向量;最后,使用特征向量拟合人眼主观打分。实验结果表明,与当前主流的质量评价方法相比,本方法与人眼主观打分评价结果更加一致,具有更高的皮尔逊相关系数和斯皮尔曼相关系数,能够更加准确地评估屏幕内容图像的视觉质量。 展开更多
关键词 无参考质量评价 深度学习 屏幕显示图像 多尺度卷积神经网络
在线阅读 下载PDF
融合CBAM注意力机制与可变形卷积的车道线检测 被引量:1
19
作者 胡丹丹 张忠婷 牛国臣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2150-2160,共11页
为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响... 为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响应;引入可变形卷积替换常规卷积,用带偏移的采样学习车道线的几何形变,提高卷积核的建模能力;基于行锚分类思想,对行方向上的位置进行选择和分类分析,预测车道线的位置信息,提高车道线检测模型的实时性。在车道线公开数据集上对所提CADCN方法进行训练及验证,在满足实时性的情况下,CADCN方法在TuSimple数据集上准确率达到96.63%,在CULane数据集上综合评估指标F1平均值达到74.4%,验证了所提方法的有效性。 展开更多
关键词 车道线检测 特征提取 注意力机制 可变形卷积网络 行锚分类
在线阅读 下载PDF
基于多尺度图像增强结合卷积神经网络的纸病识别分类 被引量:11
20
作者 李光明 薛丁华 +2 位作者 加小红 李云彤 雷涛 《中国造纸》 CAS 北大核心 2018年第8期47-54,共8页
针对造纸工业中传统纸病识别分类依赖于特征描述子和分类器的选择问题,提出一种多尺度图像增强结合卷积神经网络的纸病识别分类方法。该方法利用多尺度形态学梯度增强纸病图像的边缘轮廓信息,突出缺陷梯度特征,然后利用卷积神经网络(CNN... 针对造纸工业中传统纸病识别分类依赖于特征描述子和分类器的选择问题,提出一种多尺度图像增强结合卷积神经网络的纸病识别分类方法。该方法利用多尺度形态学梯度增强纸病图像的边缘轮廓信息,突出缺陷梯度特征,然后利用卷积神经网络(CNN)学习纸病图像的特征并分类识别,从而实现纸病的准确识别分类。实验结果表明,该方法对纸病识别分类的结果明显优于HOG+SVM、LBP+SVM以及传统CNN方法,在Caltech101、KTH-TIPS以及本课题的数据集上的分类正确识别率分别达到98.44%、99.23%和99.64%。与现有纸病识别分类方法相比,本课题方法不需针对各种纸病进行缺陷特征提取和特征描述,能快速实现纸病的准确识别分类。 展开更多
关键词 图像增强 卷积神经网络 多尺度形态学梯度 图像分类
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部