期刊文献+
共找到658篇文章
< 1 2 33 >
每页显示 20 50 100
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
1
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
2
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
基于可信多尺度二次注意力卷积神经网络的轴承故障识别
3
作者 唐宇恒 张超勇 +2 位作者 张道德 吴剑钊 薛敬宇 《计算机集成制造系统》 北大核心 2025年第8期3021-3032,共12页
为提高机械装备的可靠性与安全性,对轴承进行故障识别势在必行。然而当训练样本量缺乏时,现有故障识别模型的精度会大幅下降,同时轴承运行过程中的噪声干扰和负载变动,使其故障识别面临显著困难与挑战。针对上述问题本文提出了一种可信... 为提高机械装备的可靠性与安全性,对轴承进行故障识别势在必行。然而当训练样本量缺乏时,现有故障识别模型的精度会大幅下降,同时轴承运行过程中的噪声干扰和负载变动,使其故障识别面临显著困难与挑战。针对上述问题本文提出了一种可信多尺度二次注意力卷积神经网络模型,该模型在充分考虑特征金字塔的思想上,首先采用适用于轴承振动信号的多尺度宽卷积核,其次在后续特征提取阶段采用小卷积核,并在此阶段引入了包含注意力机制的二次神经元,最后在多尺度特征融合阶段通过将模型的输出转化为狄利克雷分布,再利用DS证据理论进行融合,达到可信分类。实验结果表明该模型具有优异的泛化能力和鲁棒性,在各种样本缺乏时的复杂工况下,其故障识别性能均优于其他对比模型,表现出极具竞争力的故障识别结果。 展开更多
关键词 轴承故障识别 二次注意力卷积 多尺度学习 可信分类
在线阅读 下载PDF
坐标注意力及卷积增强的全尺度融合建筑物提取网络
4
作者 何锐利 乐伟鹏 +1 位作者 俞友 黄亮 《科学技术与工程》 北大核心 2025年第18期7485-7492,共8页
建筑物作为人类生产活动的重要载体,准确快速地提取建筑物可在自然资源管理领域发挥重要作用。基于卷积神经网络(convolutional neural network, CNN)在遥感影像建筑物提取方面取得了重大进展,但构建的网络模型在特征提取和特征融合方... 建筑物作为人类生产活动的重要载体,准确快速地提取建筑物可在自然资源管理领域发挥重要作用。基于卷积神经网络(convolutional neural network, CNN)在遥感影像建筑物提取方面取得了重大进展,但构建的网络模型在特征提取和特征融合方面仍有待优化。因此,提出了一种坐标注意力及卷积增强的全尺度融合建筑物提取网络(coordinate attention and convolutional enhanced full-scale fusion building extraction network, CCFNet)。所构建的模型由坐标注意力及卷积增强的残差编码器和全尺度融合解码器组成。编码器使用坐标注意力构建通道间的依赖关系并捕获的全局信息,其使用的非对称卷积增强地物边缘特征提取,并对旋转、翻转扭曲及纵横比不均匀的地物有更强的鲁棒性。解码器使用的全尺度融合方法则有助于建筑物的重建。在中国典型城市建筑物实例数据集实验结果表明,相比于其他建筑物提取网络,本文构建的CCFNet模型在Accuracy、F_(1)、IOU和MIOU共4种分割评价指标分别取得了93.84%、84.08%、72.53%和82.59%的最优实验精度。结果表明,该模型能够有效地提取建筑物区域。 展开更多
关键词 坐标注意力 尺度融合 建筑物提取 非对称卷积
在线阅读 下载PDF
II导联心电图中心肌梗死检测与定位:基于多尺度残差模块融合改进通道注意力模型
5
作者 吴秋岑 卢学麒 +3 位作者 温耀棋 洪永 吴煜良 陈超敏 《南方医科大学学报》 北大核心 2025年第8期1777-1790,共14页
目的提高心肌梗死(MI)检测和定位准确性,为临床诊断提供辅助决策支持。方法本文提出了一种基于多尺度残差模块融合改进通道注意力模型(MSF-RB-MCA)。该模型利用II导联心电图(ECG)信号检测和定位MI,通过多尺度残差模块提取不同层次的特... 目的提高心肌梗死(MI)检测和定位准确性,为临床诊断提供辅助决策支持。方法本文提出了一种基于多尺度残差模块融合改进通道注意力模型(MSF-RB-MCA)。该模型利用II导联心电图(ECG)信号检测和定位MI,通过多尺度残差模块提取不同层次的特征信息,并引入改进通道注意力自动调整特征权重,增强模型对MI区域的关注能力,从而提高MI检测与定位的精度。结果使用公开的PTB数据集对提出的模型进行了5折交叉验证。在MI检测任务中,模型在测试集上的准确率、特异性、敏感度分别达到99.96%、99.84%和99.99%;在MI定位任务中,准确率、特异性、敏感度分别为99.81%、99.98%和99.65%。检测和定位结果均优于其他几种模型。结论本研究提出的MSF-RB-MCA模型在基于II导联ECG信号的MI检测与定位方面表现出色,展现出其在可穿戴设备领域中的广泛应用前景。 展开更多
关键词 心肌梗死 深度学习 多尺度 残差模块 改进通道注意力
在线阅读 下载PDF
基于多尺度注意力和空间通道重构卷积的冲击回波频谱图像分类
6
作者 崔博 武冰冰 +3 位作者 陈伟 孟庆洪 王晓 黄祺祥 《南京信息工程大学学报》 北大核心 2025年第5期659-669,共11页
针对传统卷积神经网络对冲击回波信号频谱图像进行分类时,面临卷积神经网络特征提取能力不足和数据集类别不平衡的问题,提出一种基于多尺度注意力和空间通道重构卷积的神经网络模型(Multi-scale Hybrid Attention and Spatial Channel R... 针对传统卷积神经网络对冲击回波信号频谱图像进行分类时,面临卷积神经网络特征提取能力不足和数据集类别不平衡的问题,提出一种基于多尺度注意力和空间通道重构卷积的神经网络模型(Multi-scale Hybrid Attention and Spatial Channel Reconstruction Convolutional Neural Network,MHA-SCConvNet).首先设计了多尺度混合注意力(Multi-scale Hybrid Attention,MHA)模块,用于提取不同尺度的频谱图像特征并增强模型对频谱波形关键信息的关注力度.其次,引入空间通道重构卷积(Spatial and Channel Reconstruction Convolution,SCConv)模块,通过优化图像特征的表示来降低特征冗余.最后,提出了新的混合损失函数GDHM Loss(Gradient and Distribution Harmonized Margin Loss,梯度与分布协调边距损失),该损失函数在动态情况下同时考虑难分类样本和少数类样本.在自建的数据集上进行了训练与测试,并与AlexNet、VGGNet、GoogLeNet等分类模型对比,MHA-SCConvNet准确率达到94.58%.实验结果表明,MHA-SCConvNet模型能够有效提高冲击回波信号频谱图像分类的准确率和效率. 展开更多
关键词 频谱图像分类 多尺度注意力模块 卷积神经网络 混合损失函数 空间通道重构卷积
在线阅读 下载PDF
多尺度密集交互注意力残差真实图像去噪网络 被引量:1
7
作者 郭业才 胡晓伟 +1 位作者 AMITAVE Saha 毛湘南 《图学学报》 北大核心 2025年第2期279-287,共9页
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级... 针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。 展开更多
关键词 图像去噪 多尺度特征提取 多维密集交互 卷积神经网络 注意力
在线阅读 下载PDF
基于多尺度注意力的冠脉造影图像血管增强CNN模型
8
作者 周鹏 汪光普 +3 位作者 高慧 秦泽伟 王硕 余辉 《中国生物医学工程学报》 北大核心 2025年第1期43-51,共9页
冠状动脉造影记录着血管随血液流动显影的动态过程。受心脏运动干扰,可能导致显影图像质量差,严重影响医生的诊断,同时不利于冠心病智能辅助诊断。本研究提出了一种基于卷积神经网络(CNN)的多尺度注意力冠脉造影图像血管增强网络。它由... 冠状动脉造影记录着血管随血液流动显影的动态过程。受心脏运动干扰,可能导致显影图像质量差,严重影响医生的诊断,同时不利于冠心病智能辅助诊断。本研究提出了一种基于卷积神经网络(CNN)的多尺度注意力冠脉造影图像血管增强网络。它由多尺度注意力模块(MAB)和尾部大核注意力模块(LKAT)组成。MAB由多尺度大核注意力块(MLKA)和门控空间注意力块(GSAB)两部分组成,模块不仅能够提取更多局部和全局的血管信息,而且也避免了栅格效应。LKAT具有聚合长范围信息的能力,提高了重构血管特征的表征能力,从而提升冠脉造影图像的重建质量。实验中2 666张冠脉数据集由医学专家人工标注,得到的血管分割标签作为掩膜,叠加到经高斯滤波预处理后的图像上作为冠脉增强标签。与现有的先进方法比较,本研究方法能够完整的重建冠脉造影图像,峰值信噪比(PSNR)和结构相似性(SSIM)分别达到了34.880 1和0.973 2。并且增强后的分割结果,Dice和IoU分别达到了0.851 4和0.741 3,Acc和Recall分别达到了98.55%和89.05%。所提出的方法有效实现了冠脉血管造影图像的智能增强,同时也有利于冠心病智能辅助诊断的后续处理。 展开更多
关键词 冠脉血管增强 卷积神经网络 多尺度注意力 冠状动脉造影
在线阅读 下载PDF
基于多尺度特征与混合注意力的固井第二界面胶结质量智能评价方法
9
作者 方春飞 张鑫远 +3 位作者 王正 宋先知 祝兆鹏 于佳伟 《石油钻探技术》 北大核心 2025年第5期57-66,共10页
目前,固井第二界面(水泥环−地层界面)胶结质量评价主要依赖人工对变密度测井(VDL)图像进行解释,过程耗时、主观性强且一致性不足。为提高固井第二界面胶结质量评价的准确性和效率,建立了一种包含多尺度特征提取模块和混合通道-空间注意... 目前,固井第二界面(水泥环−地层界面)胶结质量评价主要依赖人工对变密度测井(VDL)图像进行解释,过程耗时、主观性强且一致性不足。为提高固井第二界面胶结质量评价的准确性和效率,建立了一种包含多尺度特征提取模块和混合通道-空间注意力机制模块的卷积神经网络模型(MSF−HCSA Net),实现利用VDL图像自动评价固井第二界面胶结质量。该模型基于顺北油气田3口井的数据,进行了训练和验证,固井第二界面胶结质量的评价准确率达到了95.8%。在样本不均衡且“胶结质量差”小样本占比偏低的情形下,通用大卷积模型SLaK对该类样本的识别存在不足;相比之下,MSF−HCSA Net借助通道−空间混合注意力与多尺度特征融合,将小样本“胶结质量差”类别的识别准确率提升了10%,在一定程度上缓解了类间不平衡带来的性能退化。研究结果表明,建立的MSF−HCSA Net能够实现固井第二界面胶结质量的快速、客观与高效自动评价,为现场固井质量监测与后续优化提供了可靠的技术支持。 展开更多
关键词 固井质量评价 变密度测井 深度学习 卷积神经网络 多尺度特征 混合注意力
在线阅读 下载PDF
基于注意力机制的双卷积图像去噪网络
10
作者 周先春 吕梦楠 +3 位作者 芮旸 唐彬鑫 杜志亭 陈玉泽 《电子测量与仪器学报》 北大核心 2025年第2期60-71,共12页
近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet)... 近年来,深度卷积神经网络在图像去噪领域表现出了优越的性能。然而,深度网络结构往往伴随着大量的模型参数,导致训练成本高,推理时间长,限制了其在实际去噪任务中的应用。提出了一种新的基于注意力机制的双卷积图像去噪网络(MA-DFRNet),它由多尺度特征特征提取网络、双卷积神经网络及动态特征精炼注意力机制组成。多尺度特征提取网络通过不同尺度的卷积获取图像特征,提高灵活性。双卷积神经网络上下分支均采用跳跃连接及扩张卷积来增大感受野。动态特征精炼注意力机制增强特征表示的精度和区分能力。这种结构设计不仅扩大了感受野,还更有效地提取和融合图像特征,显著提升去噪效果。研究结果表明,与最先进的模型相比,提出的MA-DFRNet在所有对比的噪声水平下具有更高的峰值信噪比(PSNR)和结构相似性(SSIM)值,PSNR提高了0.2 dB左右,SSIM提高了1%左右,对于噪声水平较高的图像更具鲁棒性,并且在视觉上更好地保留了图像细节,实现去噪和细节保留之间的平衡。 展开更多
关键词 图像去噪 卷积神经网络 注意力机制 跳跃连接 多尺度特征提取网络
在线阅读 下载PDF
基于动态多尺度与双重注意力的短期电力负荷预测
11
作者 朱莉 高靖凯 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第10期369-380,共12页
短期电力负荷预测在电力系统的优化调度和安全运行中具有至关重要的作用。电力负荷数据具有多周期特性,在不同时间尺度上表现出不同的模式和趋势,准确提取尺度大小有助于识别和分离这些特征。目前方法通过使用一个或一组固定的patch长... 短期电力负荷预测在电力系统的优化调度和安全运行中具有至关重要的作用。电力负荷数据具有多周期特性,在不同时间尺度上表现出不同的模式和趋势,准确提取尺度大小有助于识别和分离这些特征。目前方法通过使用一个或一组固定的patch长度作为步长,将称之为patches的片段来编码时间序列,但其无法适应现实世界负荷序列数据的复杂的动态变化。为此,提出一种基于动态多尺度与双重注意力的预测模型(MDAT)。首先,利用逐次变分模态分解(SVMD)分离负荷序列不同的时间模式,通过快速傅里叶变换(FFT)提取出每个模式的显著周期。其次,根据检测到的显著周期,将负荷序列以不同大小的patch划分为不同的时间分辨率,使用Transformer的多个分支同时建模不同尺度分割序列的依赖关系。然后,对这些patches进行双重注意力,以捕获全局相关性和局部细节。最后,对每个分支的输出进行非线性特征融合,通过堆叠多层Transformer模块得到最终的负荷预测结果。在两个公开数据集上的实验结果表明,该模型在预测精度指标上表现良好,相比最新的基于Transformer及多层感知器(MLP)的模型,在Australia数据集和Morocco数据集上平均绝对误差(MAE)分别降低了10.26%~17.06%和9.08%~70.25%。 展开更多
关键词 短期负荷预测 逐次变分模态分解 多尺度特征 双重注意力 Transformer模块
在线阅读 下载PDF
基于多尺度注意力UNet++的地震层位识别方法 被引量:1
12
作者 杨润湉 马强 +3 位作者 王志宝 李菲 吴钧 王如意 《石油物探》 北大核心 2025年第2期315-327,共13页
现有基于深度学习的层位识别方法通常在地震振幅信号特征方面进行处理,而地层之间上、下位置的空间关系、不同尺度特征未得到充分关注,导致普通深度学习网络在识别多个地震层位时容易产生层位识别结果连续性不强和错层等问题。为了充分... 现有基于深度学习的层位识别方法通常在地震振幅信号特征方面进行处理,而地层之间上、下位置的空间关系、不同尺度特征未得到充分关注,导致普通深度学习网络在识别多个地震层位时容易产生层位识别结果连续性不强和错层等问题。为了充分利用层位之间的空间位置关系及多尺度特征,使用MultiResBlock多尺度残差模块、CBAM注意力与UNet++,提出了基于多尺度注意力UNet++的层位识别方法 (MR_CBAM_UNet++)。该方法利用MultiResBlock提取更多层位尺度特征,采用CBAM注意力模块以减少非目标层的振幅信号干扰,利用Focal Loss与Dice Loss组成的联合损失函数对网络进行训练。最后,加入唯一性约束对模型识别结果优化得到层位识别结果。在实际地震数据上的评价结果显示,MR_CBAM_UNet++模型相比于传统模型,对非层位信息的抑制能力和复杂地势下层位的识别能力均有很大提升。在测试集上,层位识别结果的准确率达到了86.19%,有效缓解了层位解释连续性不强和错层等问题,唯一性约束也使层位识别结果更贴近实际。 展开更多
关键词 地震层位解释 UNet++ CBAM注意力模块 MultiResBlock多尺度残差模块 联合损失函数
在线阅读 下载PDF
基于DenseNet和卷积注意力模块的高精度手势识别 被引量:5
13
作者 赵雅琴 宋雨晴 +3 位作者 吴晗 何胜阳 刘璞秋 吴龙文 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期967-976,共10页
非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷... 非接触的手势识别是一种新型人机交互方式,在增强现实(AR)/虚拟现实(VR)、智能家居、智能医疗等方面有着广阔的应用前景,近年来成为一个研究热点。由于需要利用毫米波雷达进行更精确的微动手势识别,该文提出一种新型的基于MIMO毫米波雷达的微动手势识别方法。采用4片AWR1243雷达板级联而成的毫米波级联(MMWCAS)雷达采集手势回波,对手势回波进行时频分析,基于距离-多普勒(RD)图和3D点云检测出人手目标。通过数据预处理,提取手势目标的距离-时间谱图(RTM)、多普勒-时间谱图(DTM)、方位角-时间谱图(ATM)和俯仰角-时间谱图(ETM),更加全面地表征手势的运动特征,并形成混合特征谱图(FTM),对12种微动手势进行识别。设计了基于DenseNet和卷积注意力模块的手势识别网络,将混合特征谱图作为网络的输入,创新性地融合了卷积注意力模块(CBAM),实验表明,识别准确率达到99.03%,且该网络将注意力放在手势动作的前半段,实现了高精度的手势识别。 展开更多
关键词 手势识别 毫米波雷达 卷积神经网络 卷积注意力模块
在线阅读 下载PDF
结合混合卷积和多尺度注意力的视频异常检测算法 被引量:1
14
作者 杨大为 刘志权 王红霞 《液晶与显示》 CAS CSCD 北大核心 2024年第8期1128-1137,共10页
基于U-net风格的无监督视频异常检测模型有着较好的检测效果,但由于普通卷积运算使用固有的局部特性,使U-Net风格的编码器无法有效地提取全局上下文信息,并且使用简单的跳跃连接无法获得有效的特征信息,使用的L2损失函数是仅考虑了像素... 基于U-net风格的无监督视频异常检测模型有着较好的检测效果,但由于普通卷积运算使用固有的局部特性,使U-Net风格的编码器无法有效地提取全局上下文信息,并且使用简单的跳跃连接无法获得有效的特征信息,使用的L2损失函数是仅考虑了像素级别的差异而无法捕捉图像的结构特征。对此提出了结合混合卷积和多尺度注意力的视频异常检测算法,并加入结构相似性损失函数(SSIM)优化模型。具体来说,在编码器最后一层添加混合卷积模块,混合空间和位置的特征来提取全局上下文信息。在编码器和解码器之间的跳跃连接中添加多尺度注意力模块,使模型能提取更有价值的特征,实现有效的跳跃连接。使用参数约束结构相似性损失函数与L2损失函数的权重,从而更准确地优化模型。实验结果表明,所提算法在UCSD-Ped2和CUHK Avenue公开数据集上的AUC指标达到96.7%和86.1%,与改进前的模型相比提高了1.6%和1.4%,证明了所提模型的有效性。 展开更多
关键词 上下文信息 跳跃连接 混合卷积 多尺度注意力 结构相似性
在线阅读 下载PDF
基于Ghost卷积与自适应注意力的点云分类 被引量:1
15
作者 舒密 王占刚 《现代电子技术》 北大核心 2025年第6期106-112,共7页
点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,... 点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,提出一种基于点云Transformer的轻量级特征增强融合分类网络EFF-LPCT。EFF-LPCT使用一维化Ghost卷积对原始网络进行重构,以降低计算复杂度和内存要求;引入自适应支路权重,以实现注意力层级间的多尺度特征融合;利用多个通道注意力模块增强特征的通道交互信息,以提高模型分类效果。在ModelNet40数据集进行的实验结果表明,EFF-LPCT在达到93.3%高精度的同时,相较于点云Transformer减少了1.11 GFLOPs的浮点计算量和0.86×10^(6)的参数量。 展开更多
关键词 点云分类 Transformer网络 Ghost卷积 特征增强融合模块 ECA通道注意力 特征学习
在线阅读 下载PDF
融合自注意力的多尺度遥感图像去模糊算法
16
作者 田旭 吕东澔 +2 位作者 张勇 任彦 李少波 《电光与控制》 北大核心 2025年第5期53-59,共7页
基于卷积神经网络的遥感图像去模糊存在感受野有限的缺陷,会导致图像在恢复过程中出现细节丢失、去模糊不彻底等问题,为此,提出一种融合自注意力的多尺度遥感图像去模糊算法。利用多输入多输出U-Net将单U-Net模拟出多级联合的多尺度卷... 基于卷积神经网络的遥感图像去模糊存在感受野有限的缺陷,会导致图像在恢复过程中出现细节丢失、去模糊不彻底等问题,为此,提出一种融合自注意力的多尺度遥感图像去模糊算法。利用多输入多输出U-Net将单U-Net模拟出多级联合的多尺度卷积操作,实现对特征的有效提取;提出一种基于Transformer的多头自注意力模块,通过嵌入到编码器与解码器中间位置来提升网络的空间特征提取和全局信息捕获能力;引入多尺度边缘损失函数,提高图像边缘细节的复原效果。构建模糊遥感图像数据集进行实验,对实验结果的定量与定性分析表明,所提算法优于对比算法。为证明该算法的泛化能力,在公开数据集GOPRO上进行了验证。研究结果表明,该算法对有效处理模糊的遥感图像具有一定的实际意义。 展开更多
关键词 遥感图像去模糊 多尺度卷积神经网络 TRANSFORMER 多头自注意力 多尺度边缘损失
在线阅读 下载PDF
MHVTs:多尺度混合视觉自注意力模型
17
作者 高丽丽 应文豪 +2 位作者 钟珊 胡文军 吴晓宇 《计算机工程与设计》 北大核心 2025年第5期1395-1402,共8页
为提高ViT模型在小型数据集上从零开始训练的性能,提出一种多尺度混合ViT模型(MHVT),由多尺度扩张局部聚集模块(MDLA)和多尺度先下采样再上采样模块(MPUA)组成。MDLA利用不同膨胀率的深度可分卷积在不同通道上提取不同尺度的局部特征。M... 为提高ViT模型在小型数据集上从零开始训练的性能,提出一种多尺度混合ViT模型(MHVT),由多尺度扩张局部聚集模块(MDLA)和多尺度先下采样再上采样模块(MPUA)组成。MDLA利用不同膨胀率的深度可分卷积在不同通道上提取不同尺度的局部特征。MPUA在自注意力计算前,在不同的通道上对查询、键和值进行不同粒度的池化处理,保持计算效率的同时捕获多尺度的全局特征。在各种小尺寸数据集上的大量实验验证了MHVT在精度和速度方面均获得了更好的权衡。 展开更多
关键词 视觉自注意力模型 局部相关性 多尺度特征交互 卷积神经网络 小型数据集 注意力模型 卷积神经网络
在线阅读 下载PDF
基于多层次瓶颈注意力模块的颅骨到面皮的生成方法
18
作者 王洁 姜文凯 +3 位作者 蒋佳琪 梁增磊 刘晓宁 耿国华 《西北大学学报(自然科学版)》 北大核心 2025年第1期201-212,共12页
从未知颅骨恢复其生前面貌是考古学、法医学和刑侦学重要的研究方向。现有的计算机三维辅助复原过程繁琐,耗时长,该研究针对现有模型在颅骨到面皮(不含纹理、头发等的面貌)图像生成上存在失真、扭曲、不平滑等现象,提出一种结合生成对... 从未知颅骨恢复其生前面貌是考古学、法医学和刑侦学重要的研究方向。现有的计算机三维辅助复原过程繁琐,耗时长,该研究针对现有模型在颅骨到面皮(不含纹理、头发等的面貌)图像生成上存在失真、扭曲、不平滑等现象,提出一种结合生成对抗网络和多层次瓶颈注意力模块的颅骨到面皮图像生成方法。该方法的生成器由6层AdaResBlock和瓶颈注意力模块组成,从通道和空间两个维度引导生成器关注更重要的区域,并根据特征自适应地调整归一化方式。同时,针对生成器模型较大的问题,引入蓝图可分离卷积减小其体积。此外,将判别器分为两部分,前几层被用来进行编码,取消传统网络中的单独编码器模块,使模型更紧凑;后几层则采用多尺度判别策略,从不同层级对图像进行分类判别,增强其准确性。实验结果表明,在颅骨到面皮图像生成任务上,该方法生成的面皮图像质量高于现有的其他方法,在视觉质量和图像质量上都取得了最高的分数,复原效果更加真实,图像定量评价指标PSNR、SSIM平均提升1.115,0.017,LPIPS平均降低0.026,面皮平均相似度为0.855。 展开更多
关键词 颅面生成 生成对抗网络 图像转换 瓶颈注意力模块 蓝图可分离卷积
在线阅读 下载PDF
自注意力机制下多尺度特征融合的轴承故障诊断
19
作者 史浩进 邱吉尔 +2 位作者 陶洪峰 唐金琳 靳广虎 《控制工程》 北大核心 2025年第9期1603-1610,共8页
针对多层次、非线性和非平稳的滚动轴承振动信号会导致轴承跨工况故障诊断困难的问题,提出了一种自注意力机制下多尺度特征融合的故障诊断模型。首先,通过不同尺度的卷积核分别提取轴承原始振动信号的低频特征与局部时域特征;其次,构建... 针对多层次、非线性和非平稳的滚动轴承振动信号会导致轴承跨工况故障诊断困难的问题,提出了一种自注意力机制下多尺度特征融合的故障诊断模型。首先,通过不同尺度的卷积核分别提取轴承原始振动信号的低频特征与局部时域特征;其次,构建嵌入多头自注意力(multi-headed self attention,MHSA)模块和压缩激励自注意力(squeezeand-excitation,SE)模块的多尺度特征融合模块MHSA-SE代替传统的拼接方法,进一步挖掘振动信号时频特征的内在联系,以提高跨工况诊断的性能。同时,采用批量归一化处理,以减少内部变量偏移,改善训练性能。实验结果表明,该端到端故障诊断方法能充分联合不同尺度特征,使跨工况的平均诊断精度达到97%以上。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于解耦注意力与幻影卷积的轻量级人体姿态估计 被引量:2
20
作者 陈俊颖 郭士杰 陈玲玲 《计算机应用》 北大核心 2025年第1期223-233,共11页
随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影... 随着轻量级网络的发展,人体姿态估计任务得以在计算资源有限的设备上执行,然而,提升精度变得更具有挑战性。这些挑战主要源于网络复杂度与计算资源的矛盾,导致模型在简化时牺牲了表示能力。针对上述问题,提出一种基于解耦注意力和幻影卷积的轻量级人体姿态估计网络(DGLNet)。具体来说,DGLNet以小型高分辨率网络(Small HRNet)模型为基础架构,通过引入解耦注意力机制构建DFDbottleneck模块;采用shuffleblock的结构对基础模块进行重新设计,即用轻量级幻影卷积替代计算量大的点卷积,并利用解耦注意力机制增强模块性能,从而构建DGBblock模块;此外,用幻影卷积和解耦注意力重新构建的深度可分离卷积模块来替代原过渡层模块,从而构建GSCtransition模块,进一步减少计算量并增强特征交互性和提高性能。在COCO验证集上的实验结果显示,DGLNet优于轻量级高分辨率网络(Lite-HRNet),在计算量和参数量不增加的情况下,最高精度达到了71.9%;与常见的轻量级姿态估计网络MobileNetV2和ShuffleNetV2相比,DGLNet在仅使用21.2%和25.0%的计算量情况下分别实现了4.6和8.3个百分点的精度提升;在AP^(50)的评价标准上,DGLNet超过了大型高分辨率网络(HRNet)的同时计算量和参数量远小于HRNet。 展开更多
关键词 人体姿态估计 轻量级网络 注意力机制 幻影卷积 深度可分离卷积模块
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部