期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度分段的长时间序列预测方法 被引量:3
1
作者 何胜林 龙琛 +6 位作者 郑静 王爽 文振焜 吴惠思 倪东 何小荣 吴雪清 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第2期232-240,共9页
针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将... 针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将时间序列切片成多个时间段进行训练和预测,降低了长时间序列的复杂性,并实现了更高精度的预测.在电力变压器油温(electricity transformer temperature,ETT)数据集、用电负荷(electricity consumption load,ECL)数据集和天气(Weather)数据集中,分别采用传统Transfomer、Informer、门控循环单元(gated recurrent unit,GRU)、时序卷积网络(temporal convolutional network,TCN)和长短期记忆(long short-term memory,LSTM)5种基准模型与本研究提出的多尺度分段的Transformer模型,对长时间序列进行预测.结果表明,采用基于多尺度分段的Transformer模型在Weather数据集上对预测长度为192的时间序列预测的均方误差和平均绝对误差分别为0.367和0.407,均优于其他模型.基于多尺度分段的Transformer模型可以综合Transformer模型的优点,且计算速度更快,预测性能更高. 展开更多
关键词 计算机神经网络 时间序列预测 Transformer模型 多尺度分段 深度学习 电力预测
在线阅读 下载PDF
分段复合多尺度模糊熵和IGWO-SVM的脑电情感识别 被引量:8
2
作者 魏雪 吴清 《计算机应用研究》 CSCD 北大核心 2019年第11期3310-3314,3356,共6页
为提高脑电的情感识别率,提出了分段复合多尺度模糊熵算法,采用分段粗粒化和计算复合多尺度模糊熵的策略,使提取特征较好地解决了数据缺失和计算不准确的问题;同时构造了应用余弦非线性收敛因子和动静态位置更新的灰狼算法优化支持向量... 为提高脑电的情感识别率,提出了分段复合多尺度模糊熵算法,采用分段粗粒化和计算复合多尺度模糊熵的策略,使提取特征较好地解决了数据缺失和计算不准确的问题;同时构造了应用余弦非线性收敛因子和动静态位置更新的灰狼算法优化支持向量机分类模型。为证明所提两种算法的有效性,进行了仿真实验验证,并在公开DEAP数据库下与几种常见的支持向量机优化模型比较脑电的情感识别率,结果表明在提出的模型下,效价、唤醒度、优势度、喜欢度的平均识别率分别为87.27%、87.81%、89.06%、87.58%,均高于其他算法。另外对比了高/低喜欢度下效价和唤醒度的分类,实验表明喜欢度低时情感识别率较高。 展开更多
关键词 脑电信号 情感识别 改进灰狼优化算法 SVM优化算法 分段复合多尺度模糊熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部