期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MDM-ResNet的脑肿瘤分类方法 被引量:8
1
作者 夏景明 邢露萍 +1 位作者 谈玲 宣大伟 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期212-219,共8页
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解... 脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解这些问题.因此,本文基于ResNet提出了一种MDM-ResNet网络,该网络由多尺寸卷积核模块(Multi-size convolution kernel module)、双通道池化层(Dual-channel pooling layer)和多深度融合残差块(Multi-depth fusion residual block)组成.本文实验在Figshare数据集上展开,采用数据增强操作对图像进行预处理,并利用5倍交叉验证方法对网络性能进行评估.最终实验结果表明MDM-ResNet能够对脑膜瘤(Meningioma)、胶质瘤(Glioma)和垂体瘤(Pituitary tumor)进行有效分类. 展开更多
关键词 脑肿瘤 深度神经网络(DNN) 残差网络(ResNet) 多尺寸卷积核模块 双通道池化层 多深度融合残差块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部