期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MDM-ResNet的脑肿瘤分类方法
被引量:
8
1
作者
夏景明
邢露萍
+1 位作者
谈玲
宣大伟
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2022年第2期212-219,共8页
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解...
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解这些问题.因此,本文基于ResNet提出了一种MDM-ResNet网络,该网络由多尺寸卷积核模块(Multi-size convolution kernel module)、双通道池化层(Dual-channel pooling layer)和多深度融合残差块(Multi-depth fusion residual block)组成.本文实验在Figshare数据集上展开,采用数据增强操作对图像进行预处理,并利用5倍交叉验证方法对网络性能进行评估.最终实验结果表明MDM-ResNet能够对脑膜瘤(Meningioma)、胶质瘤(Glioma)和垂体瘤(Pituitary tumor)进行有效分类.
展开更多
关键词
脑肿瘤
深度神经网络(DNN)
残差网络(ResNet)
多尺寸卷积核模块
双通道池化层
多深度融合残差块
在线阅读
下载PDF
职称材料
题名
基于MDM-ResNet的脑肿瘤分类方法
被引量:
8
1
作者
夏景明
邢露萍
谈玲
宣大伟
机构
南京信息工程大学
南京信息工程大学
出处
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2022年第2期212-219,共8页
基金
国家自然科学基金(41505017)。
文摘
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解这些问题.因此,本文基于ResNet提出了一种MDM-ResNet网络,该网络由多尺寸卷积核模块(Multi-size convolution kernel module)、双通道池化层(Dual-channel pooling layer)和多深度融合残差块(Multi-depth fusion residual block)组成.本文实验在Figshare数据集上展开,采用数据增强操作对图像进行预处理,并利用5倍交叉验证方法对网络性能进行评估.最终实验结果表明MDM-ResNet能够对脑膜瘤(Meningioma)、胶质瘤(Glioma)和垂体瘤(Pituitary tumor)进行有效分类.
关键词
脑肿瘤
深度神经网络(DNN)
残差网络(ResNet)
多尺寸卷积核模块
双通道池化层
多深度融合残差块
Keywords
brain tumor
deep neural network(DNN)
residual network(ResNet)
multi-size convolution kernel module
dual-channel pooling layer
multi-depth fusion residual block
分类号
R739.41 [医药卫生—肿瘤]
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MDM-ResNet的脑肿瘤分类方法
夏景明
邢露萍
谈玲
宣大伟
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2022
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部