期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多小波包系数熵和人工神经网络的输电线路故障类型识别方法
被引量:
13
1
作者
李东敏
刘志刚
+1 位作者
蔡军
霍柏超
《电网技术》
EI
CSCD
北大核心
2008年第24期65-69,共5页
基于多小波包分解系数和信息熵的概念定义了多小波包系数熵的表达式,并提出多小波包系数熵和人工神经网络相结合的输电线路故障类型识别方法:首先对不同故障工况下采集的故障电流信号进行适当的多小波包分解,计算各频带的系数熵;然后构...
基于多小波包分解系数和信息熵的概念定义了多小波包系数熵的表达式,并提出多小波包系数熵和人工神经网络相结合的输电线路故障类型识别方法:首先对不同故障工况下采集的故障电流信号进行适当的多小波包分解,计算各频带的系数熵;然后构造多小波包特征向量,将这些向量作为训练样本对径向基函数(radial basis function,RBF)神经网络进行训练;当输电线路发生故障时,将提取的故障电流信号的多小波包系数熵特征向量输入训练好的RBF神经网络,即可实现故障类型的识别。仿真结果表明采用多小波包提取的故障电流特征量比采用传统小波包提取的特征量信息更丰富,对人工神经网络的训练效果更好,网络识别精度具有明显优势。
展开更多
关键词
多小波包系数熵
RBF神经网络
输电线路
故障类型识别
在线阅读
下载PDF
职称材料
题名
基于多小波包系数熵和人工神经网络的输电线路故障类型识别方法
被引量:
13
1
作者
李东敏
刘志刚
蔡军
霍柏超
机构
西南交通大学电气化自动化研究所
出处
《电网技术》
EI
CSCD
北大核心
2008年第24期65-69,共5页
基金
教育部霍英东青年教师基金资助项目(101060)
四川省杰出青年基金项目(07ZQ026-012)
文摘
基于多小波包分解系数和信息熵的概念定义了多小波包系数熵的表达式,并提出多小波包系数熵和人工神经网络相结合的输电线路故障类型识别方法:首先对不同故障工况下采集的故障电流信号进行适当的多小波包分解,计算各频带的系数熵;然后构造多小波包特征向量,将这些向量作为训练样本对径向基函数(radial basis function,RBF)神经网络进行训练;当输电线路发生故障时,将提取的故障电流信号的多小波包系数熵特征向量输入训练好的RBF神经网络,即可实现故障类型的识别。仿真结果表明采用多小波包提取的故障电流特征量比采用传统小波包提取的特征量信息更丰富,对人工神经网络的训练效果更好,网络识别精度具有明显优势。
关键词
多小波包系数熵
RBF神经网络
输电线路
故障类型识别
Keywords
multi-wavelet packet coefficient entropy
RBF neural network
power transmission line
fault type recognition
分类号
TM713 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多小波包系数熵和人工神经网络的输电线路故障类型识别方法
李东敏
刘志刚
蔡军
霍柏超
《电网技术》
EI
CSCD
北大核心
2008
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部