当今科技飞速发展,隐私保护成为一个重要议题.为了确保数据的安全性,通常选择将数据加密后存储在云服务器上,然而这样云服务器无法对加密后的数据进行计算、统计等有效处理,从而使得很多应用场景受限.为了解决这个问题,提出一种基于环...当今科技飞速发展,隐私保护成为一个重要议题.为了确保数据的安全性,通常选择将数据加密后存储在云服务器上,然而这样云服务器无法对加密后的数据进行计算、统计等有效处理,从而使得很多应用场景受限.为了解决这个问题,提出一种基于环上容错学习(ring learning with error,R-LWE)问题的PKE-MET(public-key encryption with a multiple-ciphertext equality test)方案,并给出了正确性和安全性分析.该方案允许云服务器同时对多个密文执行相等性测试,还能够抵抗量子计算攻击.基于Palisade库对方案进行了实现,从理论与实现的角度与其他方案进行了比较分析.相较于其他方案,该方案具有高效、运行时间短的优点.展开更多
文摘当今科技飞速发展,隐私保护成为一个重要议题.为了确保数据的安全性,通常选择将数据加密后存储在云服务器上,然而这样云服务器无法对加密后的数据进行计算、统计等有效处理,从而使得很多应用场景受限.为了解决这个问题,提出一种基于环上容错学习(ring learning with error,R-LWE)问题的PKE-MET(public-key encryption with a multiple-ciphertext equality test)方案,并给出了正确性和安全性分析.该方案允许云服务器同时对多个密文执行相等性测试,还能够抵抗量子计算攻击.基于Palisade库对方案进行了实现,从理论与实现的角度与其他方案进行了比较分析.相较于其他方案,该方案具有高效、运行时间短的优点.