Thermal explosion method was used to prepare porous NiTi shape memory alloy. The process of thermal explosion was investigated. The effect of process parameters on thermal explosion reaction and properties of products...Thermal explosion method was used to prepare porous NiTi shape memory alloy. The process of thermal explosion was investigated. The effect of process parameters on thermal explosion reaction and properties of products was analyzed. The results showed heating rate, green density, particle size of initial powder strongly affected combustion temperature, porosity and compressive strength of final products. The mechanism of thermal explosion and the microstructure of reacted products were studied by XRD and SEM photographs. The results showed the final products mainly comprised of NiTi, Ti2Ni and TiNi3 phases and their strength decreased with the increase of porosity.展开更多
Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography(HPLC) in classical columns in the early 1990s and later extended to the capillary format.These...Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography(HPLC) in classical columns in the early 1990s and later extended to the capillary format.These monolithic materials are prepared using simple processes carried out in an external mold(inorganic monoliths) or within the confines of the column(organic monoliths and all capillary columns).These methods afford macroporous materials with large through-pores that enable applications in a rapid flow-through mode.Since all the mobile phase must flow through the monolith,the convection considerably accelerates mass transport within the monolithic separation medium and improves the separations.As a result,the monolithic columns perform well even at very high flow rates.The applications of monolithic capillary columns are demonstrated on numerous separations in the HPLC mode.展开更多
文摘Thermal explosion method was used to prepare porous NiTi shape memory alloy. The process of thermal explosion was investigated. The effect of process parameters on thermal explosion reaction and properties of products was analyzed. The results showed heating rate, green density, particle size of initial powder strongly affected combustion temperature, porosity and compressive strength of final products. The mechanism of thermal explosion and the microstructure of reacted products were studied by XRD and SEM photographs. The results showed the final products mainly comprised of NiTi, Ti2Ni and TiNi3 phases and their strength decreased with the increase of porosity.
基金Supported by grants of the National Institute of General Medical Sciences,National Institutes of Health(GM-48364),and the Materials Sciences and Engineering Division of the U.S.Department of Energy(DE-AC02-05CH11231).
文摘Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography(HPLC) in classical columns in the early 1990s and later extended to the capillary format.These monolithic materials are prepared using simple processes carried out in an external mold(inorganic monoliths) or within the confines of the column(organic monoliths and all capillary columns).These methods afford macroporous materials with large through-pores that enable applications in a rapid flow-through mode.Since all the mobile phase must flow through the monolith,the convection considerably accelerates mass transport within the monolithic separation medium and improves the separations.As a result,the monolithic columns perform well even at very high flow rates.The applications of monolithic capillary columns are demonstrated on numerous separations in the HPLC mode.