考虑带对流项的多孔介质方程:ut=div(ρα▽um)+∑N i=1bi(um)/xi,(x,t)∈QT=Ω×(0,T).假设对任意的i∈{1,2,…,N},bi(s)是C1函数,且存在常数β,c,使得bi(s)≤c s 1+β,b′i(s)≤c sβ.应用抛物正则化方法,得到了该方程在条件0...考虑带对流项的多孔介质方程:ut=div(ρα▽um)+∑N i=1bi(um)/xi,(x,t)∈QT=Ω×(0,T).假设对任意的i∈{1,2,…,N},bi(s)是C1函数,且存在常数β,c,使得bi(s)≤c s 1+β,b′i(s)≤c sβ.应用抛物正则化方法,得到了该方程在条件0<α<1时初边值问题解的存在唯一性.展开更多
文摘考虑带对流项的多孔介质方程:ut=div(ρα▽um)+∑N i=1bi(um)/xi,(x,t)∈QT=Ω×(0,T).假设对任意的i∈{1,2,…,N},bi(s)是C1函数,且存在常数β,c,使得bi(s)≤c s 1+β,b′i(s)≤c sβ.应用抛物正则化方法,得到了该方程在条件0<α<1时初边值问题解的存在唯一性.