期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
基于多头注意力时空图神经网络的交通流预测 被引量:1
1
作者 肖琳 陈洪超 邹复民 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期78-85,共8页
准确的交通预测对于智能交通系统(ITS)至关重要。然而,由于复杂的时间和空间依赖关系,现有的交通流预测方法未能有效捕获路网的时空特征,并且忽略了路网交通数据的相关性在空间维度和时间维度上表现出的较强动态性。为了进一步提高预测... 准确的交通预测对于智能交通系统(ITS)至关重要。然而,由于复杂的时间和空间依赖关系,现有的交通流预测方法未能有效捕获路网的时空特征,并且忽略了路网交通数据的相关性在空间维度和时间维度上表现出的较强动态性。为了进一步提高预测精度,提出了一种基于多头注意力的时空图神经网络模型。首先,该模型构造了一个自适应图结构学习组件,该自适应图结构学习组件可以有效地捕获图结构的动态时空相关性。其次,该模型基于注意力机制分别设计了时间多头注意力模块和空间多头注意力模块,所设计的时空多头注意力模块可以有效地对路网的时空特征进行提取。最后,利用堆叠的时空卷积层对未来的交通状况进行预测。在开源数据集上的实验结果表明:该模型在时空特征提取以及长期预测方面表现优异,并且比基线方法取得了更精确的预测结果。 展开更多
关键词 交通工程 交通预测 智能交通系统 时空多头注意 神经网络 自适应图结构
在线阅读 下载PDF
基于卷积神经网络和Transformer的电能质量扰动分类
2
作者 王高峰 张昊 +1 位作者 钱云 高蔓 《现代电子技术》 北大核心 2025年第16期113-122,共10页
随着新能源的大规模应用,电能质量扰动(PQDs)事件的概率显著增加,而这些扰动会给配电系统造成重大损失。因此,提出一种基于卷积神经网络(CNN)和Transformer的PQDs分类方法,即CTranCAM。该方法通过CNN的卷积操作自动提取PQDs信号时间序... 随着新能源的大规模应用,电能质量扰动(PQDs)事件的概率显著增加,而这些扰动会给配电系统造成重大损失。因此,提出一种基于卷积神经网络(CNN)和Transformer的PQDs分类方法,即CTranCAM。该方法通过CNN的卷积操作自动提取PQDs信号时间序列的局部特征,然后使用Transformer中的多头注意力机制对提取的特征进行全局和长期关系建模,以弥补CNN在处理全局信息方面的缺陷,最后通过全连接层输出识别结果。使用CTranCAM方法对25类合成PQDs数据进行仿真,结果表明,该方法的分类准确率在无噪声条件下为99.60%,在信噪比为30 dB、40 dB和50 dB时,准确率分别达到了99.20%、99.36%和99.40%,具有良好的抗噪性和泛化性能。另外,通过与其他方法的性能比较得出,所提方法在不同噪声环境下都具有较好的分类性能,是一种较优秀的PQDs分类方法。 展开更多
关键词 电能质量扰动 卷积神经网络 Transformer模型 多头注意力机制 特征提取 分类性能
在线阅读 下载PDF
基于密集连接时延神经网络的说话人识别算法
3
作者 和椿皓 常铁原 +1 位作者 潘立冬 王珺 《应用声学》 CSCD 北大核心 2024年第2期378-384,共7页
说话人识别技术是一项重要的生物特征识别技术。近年来,使用时延神经网络提取发声特征的说话人识别算法取得了突出成果。为进一步增强时延神经网络对说话人特征的提取能力,在不过多消耗计算资源的前提下提升识别准确率,通过对现有的说... 说话人识别技术是一项重要的生物特征识别技术。近年来,使用时延神经网络提取发声特征的说话人识别算法取得了突出成果。为进一步增强时延神经网络对说话人特征的提取能力,在不过多消耗计算资源的前提下提升识别准确率,通过对现有的说话人识别算法进行研究,提出一种带有注意力机制的密集连接时延神经网络用于说话人识别。密集连接的网络结构在增强不同网络层之间的信息复用的同时能有效控制模型体积。通道注意力机制和帧注意力机制帮助网络聚焦于更关键的细节特征,使得通过统计池化提取出的说话人特征更具有代表性。实验结果表明,在VoxCeleb1测试数据集上取得了1.40%的等错误率和0.15的最小检测代价标准,证明了在说话人识别任务上的有效性。 展开更多
关键词 说话人识别 深度学习 神经网络 密集连接 注意力机制
在线阅读 下载PDF
面向会话的需求感知注意图神经网络推荐模型
4
作者 郑小丽 王巍 +1 位作者 杜雨晅 张闯 《计算机工程与应用》 CSCD 北大核心 2024年第7期128-140,共13页
针对现有基于图的会话推荐方法忽略了反馈数据中由于用户行为不确定性引起的噪声影响,存在无法准确和有效地捕捉用户偏好的问题,提出一种面向会话的需求感知注意图神经网络推荐模型(DAAGNNSR)。将具有时序性的会话数据构建为图,通过引... 针对现有基于图的会话推荐方法忽略了反馈数据中由于用户行为不确定性引起的噪声影响,存在无法准确和有效地捕捉用户偏好的问题,提出一种面向会话的需求感知注意图神经网络推荐模型(DAAGNNSR)。将具有时序性的会话数据构建为图,通过引入图神经网络学习图上节点嵌入表示;将提取的项目特征使用需求感知聚合器线性聚合为用户潜在需求矩阵,以自动削弱噪声干扰,同时用低秩多头注意力网络将该矩阵与全部项目特征进行逐项兴趣交互生成需求增强的项目表征;联合独立位置编码进一步分析项目间顺序关联,并且将生成的独立位置嵌入与项目表征进行线性融合;经过预测层生成推荐列表。将所提模型在Diginetica、Tmall和Nowplaying三个公共数据集上进行训练和测试,实验结果表明,该模型的推荐精度在各指标上均优于其他基线模型,与基于图上下文自注意力机制模型(GCSAN)相比,Diginetica上NDCG@10提高了5.6%,Tmall上Recall@10提高了6.4%;与基于图神经网络的SRGNN相比,Tmall上Precision@10提高了5.0%,推荐性能显著提升。 展开更多
关键词 会话推荐 神经网络 低秩多头注意力机制 需求感知聚合器 独立位置编码
在线阅读 下载PDF
融合孪生神经网络与互注意力的建筑物变化检测
5
作者 刘晨晨 葛小三 武永斌 《遥感信息》 CSCD 北大核心 2024年第5期70-77,共8页
针对在双时相影像中提取建筑物变化区域时易出现漏检错检现象等问题,提出了一种基于孪生神经网络和多头注意力机制的遥感影像建筑物变化检测模型。该模型采用改进的轻量级网络MobileNetv2作为特征提取网络,设计了一种编解码结构的互注... 针对在双时相影像中提取建筑物变化区域时易出现漏检错检现象等问题,提出了一种基于孪生神经网络和多头注意力机制的遥感影像建筑物变化检测模型。该模型采用改进的轻量级网络MobileNetv2作为特征提取网络,设计了一种编解码结构的互注意力网络用于双时相遥感影像特征的交互融合,引入多头注意力机制实现了全局信息的上下文建模,对高级语义特征进行细化分析,充分利用了遥感影像的多尺度信息。该方法在LEVIR-CD和WHU数据集上的变化检测结果均优于其他主流分割网络,能够有效改善大型建筑物的内部空洞和漏检错检现象。 展开更多
关键词 建筑物变化检测 孪生神经网络 多头注意力机制 MobileNetv2 深度学习
在线阅读 下载PDF
基于残差注意力密集网络的协作频谱感知方法
6
作者 王安义 朱涛 龚健超 《电信科学》 北大核心 2025年第2期84-94,共11页
针对基于卷积神经网络(convolutional neural network,CNN)的协作频谱感知算法存在的网络结构简单、特征提取能力不足和感知性能下降等问题,提出了一种基于残差注意力密集网络(residual attention dense network,RADN)的协作频谱感知算... 针对基于卷积神经网络(convolutional neural network,CNN)的协作频谱感知算法存在的网络结构简单、特征提取能力不足和感知性能下降等问题,提出了一种基于残差注意力密集网络(residual attention dense network,RADN)的协作频谱感知算法。该算法通过改进基础残差块,从感受野、通道和空间3个维度引入注意力机制,结合残差连接和密集连接,构建了强大的深层特征提取结构——密集残差(residual in dense,RID),显著提升了网络的特征提取能力和频谱感知性能。实验结果表明,相较于传统深度学习方法,RADN算法在低信噪比(signal-to-noise ratio,SNR)条件下表现出显著的性能提升。该方法不仅能够适应多种调制方式,还具备较高的检测概率和良好的鲁棒性。 展开更多
关键词 协作频谱感知 卷积神经网络 注意力机制 密集连接 残差连接
在线阅读 下载PDF
多尺度密集交互注意力残差真实图像去噪网络
7
作者 郭业才 胡晓伟 +1 位作者 AMITAVE Saha 毛湘南 《图学学报》 北大核心 2025年第2期279-287,共9页
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级... 针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。 展开更多
关键词 图像去噪 多尺度特征提取 多维密集交互 卷积神经网络 注意
在线阅读 下载PDF
基于多头自注意力机制和卷积神经网络的结构损伤识别研究 被引量:9
8
作者 张健飞 黄朝东 王子凡 《振动与冲击》 EI CSCD 北大核心 2022年第24期60-71,共12页
为了提高卷积神经网络(convolutional neural networks,CNN)的结构损伤识别性能,提出了一种以结构振动加速度信号为输入的基于多头自注意力的CNN模型。模型首先利用一维CNN学习加速度信号中的局部特征,然后利用多头自注意力机制关注输... 为了提高卷积神经网络(convolutional neural networks,CNN)的结构损伤识别性能,提出了一种以结构振动加速度信号为输入的基于多头自注意力的CNN模型。模型首先利用一维CNN学习加速度信号中的局部特征,然后利用多头自注意力机制关注输入数据中不同位置和不同表征子空间中的重要信息、学习信号中的全局特征,最后利用学习到的特征进行结构损伤模式识别。悬臂梁数值试验和振动台试验的结果显示出:相比于CNN模型、CNN-长短期记忆网络(long short-term memory,LSTM)联合模型和CNN-双向LSTM(bidirectional LSTM,BiLSTM)联合模型,基于多头自注意力的CNN模型复杂度低、易于训练,且具有更高的损伤识别精度和更强的抗噪性以及对于损伤特征相近的损伤模式具有更好的辨识能力。 展开更多
关键词 深度学习 多头注意 卷积神经网络(CNN) 结构损伤识别
在线阅读 下载PDF
脑电情感识别中多上下文向量优化的卷积递归神经网络 被引量:1
9
作者 晁浩 封舒琪 刘永利 《计算机应用》 CSCD 北大核心 2024年第7期2041-2046,共6页
目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的... 目前的脑电(EEG)情感识别模型忽略了不同时段情感状态的差异性,未能强化关键的情感信息。针对上述问题,提出一种多上下文向量优化的卷积递归神经网络(CR-MCV)。首先构造脑电信号的特征矩阵序列,通过卷积神经网络(CNN)学习多通道脑电的空间特征;然后利用基于多头注意力的递归神经网络生成多上下文向量进行高层抽象特征提取;最后利用全连接层进行情感分类。在DEAP(Database for Emotion Analysis using Physiological signals)数据集上进行实验,CR-MCV在唤醒和效价维度上分类准确率分别为88.09%和89.30%。实验结果表明,CR-MCV在利用电极空间位置信息和不同时段情感状态显著性特征基础上,能够自适应地分配特征的注意力并强化情感状态显著性信息。 展开更多
关键词 多通道脑电信号 情感识别 多上下文向量 卷积递归神经网络 多头注意
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:2
10
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头注意 多核最大均值差异
在线阅读 下载PDF
基于多尺度注意力网络的密集人群计数
11
作者 文帅 蒋勇 +2 位作者 杨丹 马金刚 杨闻宇 《计算机应用与软件》 北大核心 2025年第1期130-136,157,共8页
针对拥挤场景下的尺度变化导致人群计数任务中精度较低的问题,提出一种基于多尺度注意力网络(MANet)的密集人群计数模型。通过构建多列模型以捕获多尺度特征,促进尺度信息融合;使用双注意力模块获取上下文依赖关系,增强多尺度特征图的信... 针对拥挤场景下的尺度变化导致人群计数任务中精度较低的问题,提出一种基于多尺度注意力网络(MANet)的密集人群计数模型。通过构建多列模型以捕获多尺度特征,促进尺度信息融合;使用双注意力模块获取上下文依赖关系,增强多尺度特征图的信息;采用密集连接重用多尺度特征图,生成高质量的密度图,之后对密度图积分得到计数。此外,提出一种新的损失函数,直接使用点注释图进行训练,以减少由高斯滤波生成新的密度图而带来的额外的误差。在公开人群数据集ShanghaiTech Part A/B、UCF-CC-50、UCF-QNRF上的实验结果均达到了最优,表明该网络可以有效处理拥挤场景下的目标多尺度,并且生成高质量的密度图。 展开更多
关键词 密集人群计数 多尺度 卷积神经网络 注意力机制 密集连接 损失函数
在线阅读 下载PDF
基于多头注意力循环卷积神经网络的电力设备缺陷文本分类方法 被引量:14
12
作者 陆世豪 祝云 周振茂 《广东电力》 2021年第6期30-38,共9页
充分利用历史电力设备缺陷描述文本可对新出现的设备故障进行快速分类,提升运维人员的检修效率,为此针对缺陷描述文本具有复杂语义等特点,提出基于多头注意力循环卷积神经网络(multi-head attention recurrent convolutional neural net... 充分利用历史电力设备缺陷描述文本可对新出现的设备故障进行快速分类,提升运维人员的检修效率,为此针对缺陷描述文本具有复杂语义等特点,提出基于多头注意力循环卷积神经网络(multi-head attention recurrent convolutional neural networks,MAT-RCNN)的电力设备缺陷分类方法。首先对电力设备缺陷描述文本进行研究,并分析部分文本分类模型的局限;然后采用分布式表示方法将词语表示为向量形式,并将多头注意力机制与优化的RCNN结合,构建基于MAT-RCNN的电力设备缺陷描述文本分类模型;最后,通过算例比较分析,证明所提方法在语义学习能力、分类效果等方面优于RNN等常规方法。 展开更多
关键词 多头注意 循环卷积神经网络 文本分类 电力设备缺陷文本 深度语义学习
在线阅读 下载PDF
面向图谱频繁关系模式挖掘的异质图神经网络
13
作者 段立 封皓君 张碧莹 《计算机应用与软件》 北大核心 2024年第12期201-207,共7页
鉴于目前挖掘算法难以对知识图谱建模等问题,提出一种描述和提取节点范围内结构的异质图神经网络模型,旨在挖掘其中的频繁关系模式以及各结构的分布。该模型将关系信息作为节点特征输入,利用自编码机制与多头注意力机制保留原始结构信息... 鉴于目前挖掘算法难以对知识图谱建模等问题,提出一种描述和提取节点范围内结构的异质图神经网络模型,旨在挖掘其中的频繁关系模式以及各结构的分布。该模型将关系信息作为节点特征输入,利用自编码机制与多头注意力机制保留原始结构信息,同时引入特征结构平移层将相同结构映射到同一空间中,以获得频繁出现的结构。实验结果表明,该模型可以更快地挖掘图谱关系模式以及各结构在图中的分布;同时在验证特征表达能力的链接预测任务中有稳定表现,在关系类型较多的异质图中甚至优于部分联合学习模型。 展开更多
关键词 知识图谱 神经网络 自编码机制 多头注意力机制 特征结构平移层
在线阅读 下载PDF
基于图神经网络和注意力机制的会话推荐 被引量:7
14
作者 党伟超 姚志宇 +2 位作者 白尚旺 高改梅 刘春霞 《计算机工程与设计》 北大核心 2022年第10期2953-2958,共6页
为解决基于循环神经网络会话推荐方法全局偏好表示不准确,以及欠考虑目标项目与所有项目相关性的问题,提出一种基于图神经网络和注意力机制的会话推荐方法。利用图神经网络捕捉会话项目间的依赖关系,得到项目嵌入;通过多头注意力生成全... 为解决基于循环神经网络会话推荐方法全局偏好表示不准确,以及欠考虑目标项目与所有项目相关性的问题,提出一种基于图神经网络和注意力机制的会话推荐方法。利用图神经网络捕捉会话项目间的依赖关系,得到项目嵌入;通过多头注意力生成全局嵌入准确表示全局偏好,根据目标注意力生成目标嵌入激活目标项目相关性;融合当前嵌入,得到会话嵌入,预测下一次点击。在公共数据集上进行对比实验,实验结果表明,相较最优基准模型,P@20最高达到了71.74%,提高超过0.3个百分点,MRR@20最高达到了35.20%,提高超过3个百分点,验证了该方法的有效性。 展开更多
关键词 会话推荐 神经网络 注意力机制 多头注意 目标注意
在线阅读 下载PDF
基于混合分布注意力机制与混合神经网络的语音情绪识别方法 被引量:4
15
作者 陈巧红 于泽源 贾宇波 《计算机工程与科学》 CSCD 北大核心 2022年第12期2246-2254,共9页
针对现有语音情绪识别中存在无关特征多和准确率较差的问题,提出一种基于混合分布注意力机制与混合神经网络的语音情绪识别方法。该方法在2个通道内,分别使用卷积神经网络和双向长短时记忆网络进行语音的空间特征和时序特征提取,然后将... 针对现有语音情绪识别中存在无关特征多和准确率较差的问题,提出一种基于混合分布注意力机制与混合神经网络的语音情绪识别方法。该方法在2个通道内,分别使用卷积神经网络和双向长短时记忆网络进行语音的空间特征和时序特征提取,然后将2个网络的输出同时作为多头注意力机制的输入矩阵。同时,考虑到现有多头注意力机制存在的低秩分布问题,在注意力机制计算方式上进行改进,将低秩分布与2个神经网络的输出特征的相似性做混合分布叠加,再经过归一化操作后将所有子空间结果进行拼接,最后经过全连接层进行分类输出。实验结果表明,基于混合分布注意力机制与混合神经网络的语音情绪识别方法比现有其他方法的准确率更高,验证了所提方法的有效性。 展开更多
关键词 语音情绪识别 梅尔频率倒谱系数 双向长短时记忆网络 卷积神经网络 多头注意力机制
在线阅读 下载PDF
面向会话推荐的注意力图神经网络
16
作者 陈瑶 熊棋 郭一娜 《小型微型计算机系统》 CSCD 北大核心 2023年第2期307-312,共6页
面向会话的推荐方式起源于无法获得用户历史数据的应用场景,它是通过匿名会话来预测用户的行为.现有面向会话的推荐方法,虽然可以准确获得项目嵌入和考虑项目的复杂转换,但不能从多维度提取会话序列中隐藏的用户的长期兴趣和短期偏好,... 面向会话的推荐方式起源于无法获得用户历史数据的应用场景,它是通过匿名会话来预测用户的行为.现有面向会话的推荐方法,虽然可以准确获得项目嵌入和考虑项目的复杂转换,但不能从多维度提取会话序列中隐藏的用户的长期兴趣和短期偏好,造成推荐性能低.该文引入注意力机制,提出一种多头注意力机制和软注意力机制有机结合的新机制,并据此提出面向会话推荐的注意力图神经网络.该注意力机制通过给不同的输入数据赋予不同权重,实现对当前推荐任务更为关键的信息的聚焦,以此从不同角度提取用户的兴趣和偏好.该模型在电商数据集上进行实验,与已有的基准模型相比,该文所提模型在各项评论指标上均有显著提升.在Dgeca数据集上,P@20可达61.77%,充分表明了所提方法的有效性. 展开更多
关键词 会话推荐 神经网络 位置编码 注意力机制 多头注意力机制
在线阅读 下载PDF
基于GRU的密集连接时空图注意力网络的城市交通预测
17
作者 郭海锋 许宏伟 周子盛 《高技术通讯》 CAS 北大核心 2024年第5期463-474,共12页
城市道路拓扑结构的复杂性、交通流量的实时变化以及多元的外部环境等因素给交通预测带来了极大的困难。现有方法对交通路网的时空特征挖掘性不足,缺乏对外部因素的考虑,为此本文提出了一种基于门控循环单元(GRU)的时空图注意力密集连... 城市道路拓扑结构的复杂性、交通流量的实时变化以及多元的外部环境等因素给交通预测带来了极大的困难。现有方法对交通路网的时空特征挖掘性不足,缺乏对外部因素的考虑,为此本文提出了一种基于门控循环单元(GRU)的时空图注意力密集连接网络,通过门控循环单元来捕获路网数据的动态规律,并以图注意力密集连接网络来提取路网复杂的空间结构特征,建立城市交通网络对时空的依赖关系。针对外部客观因素,采用独热编码的方式对城市各路段发生的交通事件进行数据建模,增强交通网络的信息属性。以杭州申花路及周围共309个路段为例,对所提出模型的预测能力和可行性进行验证。实验结果表明,模型预测精度最高达到了81.64%,与传统数学模型和主流的神经网络模型对比,预测精度较ARIMA提高了35.42%,较图注意力网络(GAT)和GRU神经网络分别提高了17.45%和3.02%。实验证明该方法可以适应复杂的交通流进行长期的交通预测任务,同时也能增强交通管理能力,减少交通拥堵成本。 展开更多
关键词 交通预测 时空特征 神经网络 门控循环单元(GRU) 密集连接 注意网络(GAT)
在线阅读 下载PDF
浅层卷积神经网络融合Transformer的金属缺陷图像识别方法 被引量:16
18
作者 唐东林 杨洲 +3 位作者 程衡 刘铭璇 周立 丁超 《中国机械工程》 EI CAS CSCD 北大核心 2022年第19期2298-2305,2316,共9页
针对金属缺陷识别领域中传统深度学习方法存在参数量多、计算量大的问题,提出了一种浅层卷积神经网络融合Transformer模型的金属缺陷识别方法。利用浅层卷积神经网络学习图像局部信息与位置信息,通过Transformer学习图像全局信息,同时... 针对金属缺陷识别领域中传统深度学习方法存在参数量多、计算量大的问题,提出了一种浅层卷积神经网络融合Transformer模型的金属缺陷识别方法。利用浅层卷积神经网络学习图像局部信息与位置信息,通过Transformer学习图像全局信息,同时引入通道注意力模块SE关注重要特征通道,实现缺陷图像识别。通过引入公开缺陷数据集验证该方法的有效性,同时利用自建缺陷超声数据集验证所提方法的通用性。实验结果表明,在中小规模数据集上,该方法通用性较强,能够对金属缺陷图像进行有效识别。 展开更多
关键词 金属缺陷识别 深度学习 卷积神经网络 Transformer模型 多头注意
在线阅读 下载PDF
融合卷积神经网络与双向GRU的文本情感分析胶囊模型 被引量:11
19
作者 程艳 孙欢 +3 位作者 陈豪迈 李猛 蔡盈盈 蔡壮 《中文信息学报》 CSCD 北大核心 2021年第5期118-129,共12页
文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双... 文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双向GRU网络的文本情感分析胶囊模型。该模型首先使用多头注意力学习单词间的依赖关系、捕获文本中情感词,利用卷积神经网络和双向GRU提取文本不同粒度的情感特征,特征融合后输入全局平均池化层,在得到文本的实例特征表示的同时,针对每个情感类别结合注意力机制生成特征向量构建情感胶囊,最后根据胶囊属性判断文本情感类别。模型在MR、IMDB、SST-5及谭松波酒店评论数据集上进行实验,相比于其他基线模型具有更好的分类效果。 展开更多
关键词 文本情感分析 多头注意 卷积神经网络 双向门控循环网络 情感胶囊
在线阅读 下载PDF
基于改进双重压缩和激励与多头特征注意力机制的电-热负荷协同预测
20
作者 余强 韩静娴 +4 位作者 杨子梁 宋济东 杨德昌 齐海杰 于芃 《电力自动化设备》 北大核心 2025年第3期201-208,共8页
综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注... 综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注意力对卷积结果进行赋权,并利用输入门控循环单元模型对负荷进行预测。算例仿真结果表明,所提模型的平均绝对百分比误差均低于3%。 展开更多
关键词 综合能源系统 负荷预测 分组卷积神经网络 门控循环单元 改进的压缩和激励注意力机制 多头特征注意力机制
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部