期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:4
1
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
在线阅读 下载PDF
基于深度可分离空洞卷积金字塔的变压器渗漏油检测 被引量:7
2
作者 赵文清 刘亮 +2 位作者 胡嘉伟 翟永杰 赵振兵 《智能系统学报》 CSCD 北大核心 2023年第5期966-974,共9页
为了降低影响并提高对变压器渗漏油巡检图像的检测效率,提出一种基于深度可分离空洞卷积金字塔的变压器渗漏油检测模型。首先,将空洞金字塔中普通卷积块修改为深度可分离卷积块,以此扩大金字塔感受野,使特征提取网络提取到的特征图语义... 为了降低影响并提高对变压器渗漏油巡检图像的检测效率,提出一种基于深度可分离空洞卷积金字塔的变压器渗漏油检测模型。首先,将空洞金字塔中普通卷积块修改为深度可分离卷积块,以此扩大金字塔感受野,使特征提取网络提取到的特征图语义信息更加丰富;然后,改进了特征提取阶段低阶语义特征与高阶语义特征融合过程,进一步增强特征提取网络产生特征图的语义信息;最后,为了避免经过多次卷积、池化操作后特征图语义信息的损失,在融合过程中引入空间注意力机制和通道注意力机制,进一步增强特征图中的语义信息。与UNet(convolutional networks for biomedical image segmentation)、PSPNet(pyramid scene parseing network)、DeepLabv3+(encoder-decoder with atrous separable convolution for semantic image segmentation)和MCNN(multi-class convolutional neural network)等算法进行对比实验发现,本文所提出网络检测模型效果好,查准率达到了76.85%,平均交并比达到了64.63%,召回率达到了73.56%,检测速率达到了30 f/s。为了验证本文提出方法的有效性,设计了消融实验,与基础网络模型相比,查准率提高了9.33%,平均交并比提高了7.15%,召回率提高了5.66%。 展开更多
关键词 变压器 渗漏油检测 语义信息 深度分离空洞卷积金字塔 低阶特征 高阶特征 特征融合 注意力机制
在线阅读 下载PDF
基于Dual Dense U-Net的云南壁画破损区域预测 被引量:2
3
作者 罗启明 吴昊 +1 位作者 夏信 袁国武 《图学学报》 CSCD 北大核心 2023年第2期304-312,共9页
壁画破损区域预测是壁画虚拟修复工作的重要环节,针对现有方法在预测云南少数民族壁画破损区域时容易出现破损区域预测不全、对纹理复杂区域的破损边界预测不准确等问题,提出了一种基于U-Net改进的Dual Dense U-Net分割模型,通过增强破... 壁画破损区域预测是壁画虚拟修复工作的重要环节,针对现有方法在预测云南少数民族壁画破损区域时容易出现破损区域预测不全、对纹理复杂区域的破损边界预测不准确等问题,提出了一种基于U-Net改进的Dual Dense U-Net分割模型,通过增强破损区域位置特征和纹理特征,获取更多的判别信息,以提高破损掩膜预测的准确度。为使模型能更有效地学习壁画特征,建立了一个包含5 000张云南少数民族壁画图像的分割数据集。Dual Dense U-Net模型利用融合模块去对壁画图像进行多尺度融合,减少壁画图像在前馈过程中的局部纹理信息和空间位置信息损失。首先,利用U-Net结构对输入的壁画图像进行信息提取,融合模块有多个深度可分离卷积,能够提高融合模块效率以及分割精度;其次,融合模块连接两个U-Net,进一步加强浅层特征与深层特征间的联系。实验结果表明,该模型在IoU与Dice评价指标较UNet++提高了3个百分点,模型预测得到的破损区域能显著改善壁画修复网络的修复效果,验证了该模型在壁画破损区域预测领域的有效性。 展开更多
关键词 壁画分割 病害提取 深度分离卷积 多尺度信息融合 深度学习
在线阅读 下载PDF
融合注意力机制的恶意代码家族分类研究 被引量:9
4
作者 王润正 高见 +1 位作者 仝鑫 杨梦岐 《计算机科学与探索》 CSCD 北大核心 2021年第5期881-892,共12页
近年来,随着恶意代码家族变种的多样化和混淆等对抗手段的不断加强,传统的恶意代码检测方法难以取得较好的分类效果。鉴于此,提出了一种融合注意力机制的恶意代码家族分类模型。首先,使用逆向反汇编工具获取恶意样本的各区段特征,并利... 近年来,随着恶意代码家族变种的多样化和混淆等对抗手段的不断加强,传统的恶意代码检测方法难以取得较好的分类效果。鉴于此,提出了一种融合注意力机制的恶意代码家族分类模型。首先,使用逆向反汇编工具获取恶意样本的各区段特征,并利用可视化技术将各区段转化为RGB彩色图像的各通道;其次,引入通道域和空间域注意力机制来构建基于混合域注意力机制的深度可分离卷积网络,从通道和空间两个维度提取恶意样本的图像纹理特征;最后,选取九类恶意代码家族对模型进行训练和测试。实验结果表明,使用单一区段特征对恶意代码家族分类的准确率较低,采用融合特征能够有效地区分各类恶意代码家族,同时该模型相比于传统的神经网络模型取得了更好的分类效果,模型的分类准确率达到了98.38%。 展开更多
关键词 恶意家族 多分类 混合注意力机制 深度分离卷积 融合特征
在线阅读 下载PDF
改进DeepLabV3+模型在壁画分割中的应用 被引量:7
5
作者 曹建芳 田晓东 +1 位作者 贾一鸣 闫敏敏 《计算机应用》 CSCD 北大核心 2021年第5期1471-1476,共6页
针对古代壁画图像分割过程中出现的目标边界模糊、图像分割效率低等问题,提出一种融合轻量级卷积神经网络的多分类图像分割模型MC-DM,该模型将DeepLabV3+结构和MobileNetV2相结合,利用DeepLabV3+特有的空间金字塔结构对壁画的卷积特征... 针对古代壁画图像分割过程中出现的目标边界模糊、图像分割效率低等问题,提出一种融合轻量级卷积神经网络的多分类图像分割模型MC-DM,该模型将DeepLabV3+结构和MobileNetV2相结合,利用DeepLabV3+特有的空间金字塔结构对壁画的卷积特征进行多尺度融合,从而减少壁画分割时的图像细节损失。首先,通过MobileNetV2对输入图像进行特征提取,从而在确保图像信息准确提取的同时减少耗时;其次,通过空洞卷积处理图像特征,从而扩展感受野,并在不改变参数数量的情况下得到更多的语义信息;最后,采用双线性插值的方法对输出特征图像进行上采样,以得到像素级的预测分割图,从而最大限度保证图像分割的准确性。在JetBrains PyCharm Community Edition 2019环境下,利用以1 000张壁画扫描图片制作而成的数据集进行测试,实验结果表明,MC-DM模型较传统的基于SegNet的图像分割模型在训练精确度上提升了1个百分点,较基于PSPNet的图像分割模型在精确度上提升了2个百分点,且MC-DM模型的峰值信噪比(PSNR)较实验对比模型平均提高了3~8 dB,充分验证了该模型在壁画分割领域的有效性。所提模型为古代壁画图像分割提供了新的思路。 展开更多
关键词 壁画分割 多尺度信息融合 深度分离卷积 倒转残差 空间金字塔池
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部