期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
多图正则多核非负矩阵分解高光谱图像解混 被引量:2
1
作者 刘敬 李康欣 +1 位作者 张悠 刘逸 《光学精密工程》 EI CAS CSCD 北大核心 2022年第14期1657-1668,共12页
针对高光谱遥感图像的非线性解混问题,提出一种多图正则多核非负矩阵分解(MGMKNMF)算法,构造了多核空间中的多图正则项,并基于此构造了包含多核空间的多图正则项、多核权重正则项和多图权重正则项的MGMKNMF目标函数。MGMKNMF可在学习端... 针对高光谱遥感图像的非线性解混问题,提出一种多图正则多核非负矩阵分解(MGMKNMF)算法,构造了多核空间中的多图正则项,并基于此构造了包含多核空间的多图正则项、多核权重正则项和多图权重正则项的MGMKNMF目标函数。MGMKNMF可在学习端元与丰度的过程中更新多核权重和多图权重,在合适的多核空间精确构造输入数据的图,解决了图权重和核权重的参数选择的问题。相比核非负矩阵分解(KNMF)的单一核,多核可确定更合适的核空间;相比图正则非负矩阵分解(GNMF)的单一图,多图更准确可靠。2个实测数据集和2个模拟数据集上的实验结果表明MGMKNMF算法是有效的。与GNMF、不含纯像元的核非负矩阵分解、核稀疏非负矩阵分解、基于核的字典剪枝非线性光谱解混、多图正则核非负矩阵分解算法相比,所提MGMKNMF算法在Cuprite和JasperRidge真实地物数据集上平均光谱角距离(SAD)值最优,分别为0.0921和0.0970;在HAPKE和广义双线性模型模拟数据集上平均SAD最优,分别是0.1375和0.1456,均方根误差值表现也最好,分别为0.0506和0.0570。 展开更多
关键词 解混 多图正则多核非负矩阵分解 正则 高光谱
在线阅读 下载PDF
基于伽玛-泊松分布和图正则化的单细胞非负矩阵分解算法
2
作者 龙法宁 潘伟权 苏秀秀 《广西科学》 北大核心 2024年第5期925-938,共14页
单细胞RNA测序(Single-cell RNA sequencing, scRNA-seq)可以获取单细胞水平的基因表达谱。然而,目前许多基于非负矩阵分解(Non-negative Matrix Factorization, NMF)的降维算法在细胞类型识别中往往忽视了数据概率分布和细胞之间的拓... 单细胞RNA测序(Single-cell RNA sequencing, scRNA-seq)可以获取单细胞水平的基因表达谱。然而,目前许多基于非负矩阵分解(Non-negative Matrix Factorization, NMF)的降维算法在细胞类型识别中往往忽视了数据概率分布和细胞之间的拓扑关系,无法较好地兼顾数据的全局结构和局部结构。为了克服传统NMF降维算法在处理高维含噪稀疏数据时的不足,本文提出一种改进的单细胞非负矩阵分解算法GPNMF。GPNMF结合了伽玛-泊松(Gamma-Poisson)分布假设和图正则化技术,通过迭代更新因子分解矩阵以最小化重构误差,从而有效地保留数据的局部结构与全局结构。通过引入约束优化并稳定化模型,GPNMF在分解单细胞表达数据时能够提供更为稳健和可靠的结果。最后,利用真实scRNA-seq数据进行实验,验证了GPNMF的有效性,并展示了其在单细胞基因表达数据轨迹推断分析中的潜在应用。 展开更多
关键词 单细胞RNA测序 降维 正则 伽玛-泊松分布 矩阵分解(NMF)
在线阅读 下载PDF
基于双因子分层约束的深度非负矩阵分解用于高光谱解混
3
作者 屈克文 罗小娟 保文星 《液晶与显示》 北大核心 2025年第10期1490-1508,共19页
高光谱解混(HU)是解决混合像元和表征土地覆盖成分的关键技术。尽管深度非负矩阵分解(DNMF)在HU中表现优异,但现有方法多聚焦于丰度建模,忽视了端元的多层次特征提取,且对其非线性表征能力不足,限制了解混精度。为此,本文提出一种面向... 高光谱解混(HU)是解决混合像元和表征土地覆盖成分的关键技术。尽管深度非负矩阵分解(DNMF)在HU中表现优异,但现有方法多聚焦于丰度建模,忽视了端元的多层次特征提取,且对其非线性表征能力不足,限制了解混精度。为此,本文提出一种面向端元层次分析的深度NMF框架,引入端元子空间的层间正交性约束和丰度细化的动态稀疏正则化。首先,通过多层端元分解增强光谱的非线性特征表达;其次,设计一种最小距离引导的子空间正交机制提升端元可分性,并与动态加权稀疏性策略协同,提升丰度估计的空间一致性;最后,以预训练粗初始化和跨层反向传播精调为核心,构建两阶段的分层优化算法。在2个合成数据集和4个真实数据集上进行实验,结果显示,本文方法在不同信噪比下的SAD为0.004 2~0.078 2,RMSE为0.014 0~0.092 5,分别优于对比方法 1.42%~5.64%和1.87%~6.48%,验证了其准确性与鲁棒性。 展开更多
关键词 高光谱解混 深度矩阵分解 端元判别 正交约束 分层稀疏正则
在线阅读 下载PDF
带核方法的判别图正则非负矩阵分解 被引量:2
4
作者 李向利 张颖 《计算机科学与探索》 CSCD 北大核心 2020年第11期1899-1907,共9页
非负矩阵分解(NMF)是一种非常有效的数据降维方法,广泛应用于图像聚类等领域。然而NMF是一种无监督的方法,没有使用数据的标签信息,也不能捕获数据固有的几何结构,并且这是一种线性的方法,不能处理数据是非线性的情况。为此,提出了一种... 非负矩阵分解(NMF)是一种非常有效的数据降维方法,广泛应用于图像聚类等领域。然而NMF是一种无监督的方法,没有使用数据的标签信息,也不能捕获数据固有的几何结构,并且这是一种线性的方法,不能处理数据是非线性的情况。为此,提出了一种带核方法的判别图正则非负矩阵分解算法。该算法使用了部分有标签数据的标签信息,加入了图正则项来捕获数据的几何结构,使用核方法解决了数据非线性的问题,分解的结果能够有效地提高聚类效果。一般的非负矩阵分解迭代更新的初始化是随机产生的,使用一种"热启动"的策略,减小了结果的随机性。在几种图片数据集上使用该算法进行聚类实验,并与一些先进算法进行了比较,实验结果证明了该算法的有效性。 展开更多
关键词 矩阵分解(NMF) 半监督聚类 正则 方法
在线阅读 下载PDF
基于核技巧和超图正则的稀疏非负矩阵分解 被引量:2
5
作者 余江兰 李向利 赵朋飞 《计算机应用》 CSCD 北大核心 2019年第3期742-749,共8页
针对传统的非负矩阵分解(NMF)应用于聚类时,没有同时考虑到鲁棒性和稀疏性,导致聚类性能较低的问题,提出了基于核技巧和超图正则的稀疏非负矩阵分解算法(KHGNMF)。首先,在继承核技巧的良好性能的基础上,用L_(2,1)范数改进标准非负矩阵... 针对传统的非负矩阵分解(NMF)应用于聚类时,没有同时考虑到鲁棒性和稀疏性,导致聚类性能较低的问题,提出了基于核技巧和超图正则的稀疏非负矩阵分解算法(KHGNMF)。首先,在继承核技巧的良好性能的基础上,用L_(2,1)范数改进标准非负矩阵分解中的F范数,并添加超图正则项以尽可能多地保留原始数据间的内在几何结构信息;其次,引入L_(2,1/2)伪范数和L_(1/2)正则项作为稀疏约束合并到NMF模型中;最后,提出新算法并将新算法应用于图像聚类。在6个标准的数据集上进行验证,实验结果表明,相对于非线性正交图正则非负矩阵分解方法,KHGNMF使聚类性能(精度和归一化互信息)成功地提升了39%~54%,有效地改善和提高了算法的稀疏性和鲁棒性,聚类效果更好。 展开更多
关键词 矩阵分解 正则 L2 1/2矩阵伪范数 稀疏性 鲁棒性 L2 1范数
在线阅读 下载PDF
稀疏约束图正则非负矩阵分解 被引量:13
6
作者 姜伟 李宏 +1 位作者 余震国 杨炳儒 《计算机科学》 CSCD 北大核心 2013年第1期218-220,256,共4页
非负矩阵分解(NMF)是在矩阵非负约束下的一种局部特征提取算法。为了提高识别率,提出了稀疏约束图正则非负矩阵分解方法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们整合于单个目标函数中。构造了一个有效的乘... 非负矩阵分解(NMF)是在矩阵非负约束下的一种局部特征提取算法。为了提高识别率,提出了稀疏约束图正则非负矩阵分解方法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们整合于单个目标函数中。构造了一个有效的乘积更新算法,并且在理论上证明了该算法的收敛性。在ORL和MIT-CBCL人脸数据库上的实验表明了该算法的有效性。 展开更多
关键词 矩阵 正则 稀疏编码
在线阅读 下载PDF
基于图正则化的半监督非负矩阵分解 被引量:7
7
作者 杜世强 石玉清 +1 位作者 王维兰 马明 《计算机工程与应用》 CSCD 2012年第36期194-200,共7页
提出了一种基于图正则化的半监督非负矩阵分解算法(GSNMF),克服了非负矩阵分解(NMF)、约束非负矩阵分解(CNMF)和图正则化非负矩阵分解(GNMF)方法忽略样本数据的局部几何结构或标签信息不足的缺陷,且NMF、CNMF和GNMF均为GSNMF的特例。也... 提出了一种基于图正则化的半监督非负矩阵分解算法(GSNMF),克服了非负矩阵分解(NMF)、约束非负矩阵分解(CNMF)和图正则化非负矩阵分解(GNMF)方法忽略样本数据的局部几何结构或标签信息不足的缺陷,且NMF、CNMF和GNMF均为GSNMF的特例。也从理论上证明了GSNMF算法的收敛性。该算法对样本数据进行低维非负分解时,在图框架下既保持数据的几何结构,又利用已知样本的标签信息,在进行半监督学习时,同类样本能更好地聚集而类间距离尽可能大。在人脸数据库ORL、FERET和手写体数据库USPS上的仿真结果表明,相对于NMF及其一些改进算法,GSNMF均具有更高的聚类精度。 展开更多
关键词 像聚类 半监督学习 矩阵分解 正则
在线阅读 下载PDF
L_(3/2)正则化图非负矩阵分解算法 被引量:6
8
作者 杜世强 石玉清 +1 位作者 马明 王维兰 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第5期1007-1013,共7页
基于图正则化非负矩阵分解算法(GNMF),提出一种基于凸光滑的L3/2范数正则化图非负矩阵分解算法.该算法用非负矩阵分解算法对数据进行低维非负分解时,根据流形学习的图框架理论,构建邻接矩阵保持数据局部几何结构,并对数据的低维表示特... 基于图正则化非负矩阵分解算法(GNMF),提出一种基于凸光滑的L3/2范数正则化图非负矩阵分解算法.该算法用非负矩阵分解算法对数据进行低维非负分解时,根据流形学习的图框架理论,构建邻接矩阵保持数据局部几何结构,并对数据的低维表示特征进行凸光滑的L3/2范数稀疏性约束,在给出算法更新迭代规则的同时,从理论上证明了所给算法的收敛性.通过人脸数据库ORL、手写体数据库USPS和图像库COIL20的仿真实验表明,相对于非负矩阵分解算法及其基于稀疏表示的改进算法,所给算法均具有更高的聚类精度. 展开更多
关键词 像聚类 稀疏表示 矩阵分解 正则
在线阅读 下载PDF
基于图正则化非负矩阵分解的二分网络社区发现算法 被引量:5
9
作者 汪涛 刘阳 席耀一 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2238-2245,共8页
现实世界存在大量二分网络,研究其社区结构有助于从新角度认识和理解异质复杂网络。非负矩阵分解模型能够克服二分结构的限制,有效地挖掘二分网络的潜在结构,但也存在着时间复杂度高、收敛慢等问题。该文提出一种基于图正则化的三重非... 现实世界存在大量二分网络,研究其社区结构有助于从新角度认识和理解异质复杂网络。非负矩阵分解模型能够克服二分结构的限制,有效地挖掘二分网络的潜在结构,但也存在着时间复杂度高、收敛慢等问题。该文提出一种基于图正则化的三重非负矩阵分解(NMTF)算法应用于二分网络社区发现,通过图正则化将用户子空间和目标子空间的内部连接关系作为约束项引入到三重非负矩阵分解模型中;同时将NMTF分解为两个最小化近似误差的子问题,并给出了乘性迭代算法以交替更新因子矩阵,从而简化矩阵分解迭代,加快收敛速度。实验和分析证明:对于计算机生成网络和真实网络,该文提出的社区划分方法均表现出较高的准确率和稳定性,能够快速准确地挖掘二分网络的社区结构。 展开更多
关键词 二分网络 社区发现 正则 矩阵分解
在线阅读 下载PDF
基于图正则化和稀疏约束的半监督非负矩阵分解 被引量:5
10
作者 姜小燕 孙福明 李豪杰 《计算机科学》 CSCD 北大核心 2016年第7期77-82,105,共7页
非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对... 非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对基矩阵施加稀疏性约束,最后将它们整合于单个目标函数中。构造了一个有效的更新算法,并且在理论上证明了该算法的收敛性。在多个人脸数据库上的仿真结果表明,相对于NMF、GNMF、CNMF等算法,GCNMFS具有更好的聚类精度和稀疏性。 展开更多
关键词 矩阵分解 正则 稀疏约束 半监督
在线阅读 下载PDF
稀疏约束图正则非负矩阵分解的增量学习算法 被引量:3
11
作者 汪金涛 曹玉东 孙福明 《计算机应用》 CSCD 北大核心 2017年第4期1071-1074,共4页
针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在... 针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在稀疏约束和图正则化的条件下利用上一步的分解结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和PIE人脸数据库上的实验结果表明了该算法的有效性。 展开更多
关键词 矩阵分解 稀疏约束 正则 几何结构 增量学习
在线阅读 下载PDF
基于核非负矩阵分解的有向图聚类算法 被引量:3
12
作者 陈献 胡丽莹 +1 位作者 林晓炜 陈黎飞 《计算机应用》 CSCD 北大核心 2021年第12期3447-3454,共8页
现有的有向图聚类算法大多基于向量空间中节点间的近似线性关系假设,忽略了节点间存在的非线性相关性。针对该问题,提出一种基于核非负矩阵分解(KNMF)的有向图聚类算法。首先,引入核学习方法将有向图的邻接矩阵投影到核空间,并通过特定... 现有的有向图聚类算法大多基于向量空间中节点间的近似线性关系假设,忽略了节点间存在的非线性相关性。针对该问题,提出一种基于核非负矩阵分解(KNMF)的有向图聚类算法。首先,引入核学习方法将有向图的邻接矩阵投影到核空间,并通过特定的正则项约束原空间及核空间中节点间的相似性。其次,提出了图正则化核非对称NMF算法的目标函数,并在非负约束条件下通过梯度下降方法推导出一个聚类算法。该算法在考虑节点连边的方向性的同时利用核学习方法建模节点间的非线性关系,从而准确地揭示有向图中潜在的结构信息。最后,在专利-引文网络(PCN)数据集上的实验结果表明,簇的数目为2时,和对比算法相比,所提算法将DB值和DQF值分别提高了约0.25和8%,取得了更好的聚类质量。 展开更多
关键词 有向聚类 矩阵分解 学习方法 正则 节点相似性
在线阅读 下载PDF
基于图正则化和稀疏约束的增量型非负矩阵分解 被引量:4
13
作者 孙静 蔡希彪 +1 位作者 姜小燕 孙福明 《计算机科学》 CSCD 北大核心 2017年第6期298-305,共8页
非负矩阵分解(Nonnegative Matrix Factorization,NMF)不仅可以很好地描述数据而且分解后的矩阵具有直观的物理意义。为了提高算法的有效性和识别率,提出了一种更为合理的算法——基于图正则化和稀疏约束的增量型非负矩阵分解(Graph Reg... 非负矩阵分解(Nonnegative Matrix Factorization,NMF)不仅可以很好地描述数据而且分解后的矩阵具有直观的物理意义。为了提高算法的有效性和识别率,提出了一种更为合理的算法——基于图正则化和稀疏约束的增量型非负矩阵分解(Graph Regularized and Incremental Nonnegative Matrix Factorization with Sparseness Constraints,GINMFSC)。该算法既保持了数据的几何结构,又充分利用上一步的分解结果进行增量学习,而且对系数矩阵施加了稀疏性约束,最后将它们整合于单个目标函数中,构造了一个有效的更新算法。在多个数据库上的仿真结果表明,相对于NMF,GNMF,INMF,IGNMF等算法,GINMFSC算法在降低运算时间的同时,还具有更好的聚类精度和稀疏性。 展开更多
关键词 矩阵分解 正则 稀疏约束 增量学习
在线阅读 下载PDF
基于图正则化和l_(1/2)稀疏约束的非负矩阵分解算法 被引量:4
14
作者 张旭 陈志奎 高静 《小型微型计算机系统》 CSCD 北大核心 2018年第11期2480-2484,共5页
随着计算机科学和生物医学的发展,基因表达谱数据能够以高维数据的形式导出,这为应用数据挖掘算法对其分析处理提供了可能.基因表达谱数据存在高维度和高冗余特性,实际应用中常需要进行维度约简.基于非负矩阵分解的方法常被选择为维度... 随着计算机科学和生物医学的发展,基因表达谱数据能够以高维数据的形式导出,这为应用数据挖掘算法对其分析处理提供了可能.基因表达谱数据存在高维度和高冗余特性,实际应用中常需要进行维度约简.基于非负矩阵分解的方法常被选择为维度约简的手段,但由于传统方法未进行针对性处理,在基因数据集上的表现不佳.针对此类数据的特点,本文提出了一种基于非负矩阵分解的改进算法,结合图正则化处理和稀疏化理论,进一步加入了去噪处理,对处理过度冗余的高维基因表达谱数据特别有效.实验表明,算法在肿瘤基因数据集上的表现整体优于传统基于非负矩阵分解的算法. 展开更多
关键词 矩阵分解 维度约简 基因表达谱 稀疏约束 正则 去噪处理
在线阅读 下载PDF
图正则化非负矩阵分解的异质网社区发现 被引量:2
15
作者 刘家骥 包崇明 +2 位作者 周丽华 王崇云 孔兵 《计算机工程与应用》 CSCD 北大核心 2020年第21期131-138,共8页
挖掘数据网络中有价值的、具有稳定性的社区,对网络信息的获取、推荐及网络的演化预测具有重要的价值。针对现有异质网络聚类方法难以在同一维度有效整合网络中异质信息的问题,提出了一种基于图正则化非负矩阵分解的异质网络聚类方法。... 挖掘数据网络中有价值的、具有稳定性的社区,对网络信息的获取、推荐及网络的演化预测具有重要的价值。针对现有异质网络聚类方法难以在同一维度有效整合网络中异质信息的问题,提出了一种基于图正则化非负矩阵分解的异质网络聚类方法。通过加入图正则项,将中心类型子空间和属性类型子空间的内部连接关系作为约束项,引入到非负矩阵分解模型中,从而找到高维数据在低维空间的紧致嵌入,成功消除了异质节点之间的部分噪声,同时,对反映不同子网络共有潜在结构的共识矩阵进行优化,有效整合异质信息,并且在降维过程中较大限度地保留了异质信息的完整性,提高了异质网络聚类方法的精度,在真实世界数据集上的实验结果也验证了该方法的有效性。 展开更多
关键词 异质网络 社区发现 矩阵分解 正则
在线阅读 下载PDF
基于约束图正则的块稀疏对称非负矩阵分解 被引量:2
16
作者 刘威 邓秀勤 +1 位作者 刘冬冬 刘玉兰 《计算机科学》 CSCD 北大核心 2023年第7期89-97,共9页
现有的基于对称非负矩阵因式分解(Symmetric Nonnegative matrix Factorization, SymNMF)算法大都仅依赖初始数据构造亲和矩阵,并且一定程度上忽视了样本有限的成对约束信息,无法有效区分不同类别的相似样本以及学习样本的几何特征。针... 现有的基于对称非负矩阵因式分解(Symmetric Nonnegative matrix Factorization, SymNMF)算法大都仅依赖初始数据构造亲和矩阵,并且一定程度上忽视了样本有限的成对约束信息,无法有效区分不同类别的相似样本以及学习样本的几何特征。针对以上问题,提出了基于约束图正则的块稀疏对称非负矩阵分解(Block Sparse Symmetric Nonnegative Matrix Factorization Based on Constrained Graph Regularization, CGBS-SymNMF)。首先,通过先验信息构造约束图矩阵,用于指导类别指示矩阵区分高相似度的不同类别样本;然后,引入PCP-SDP(Pairwise Constraint Propagation by Semi-definite Programming)方法,利用成对约束学习一个新的样本图映射矩阵;最后,利用“勿连”约束构造不相似矩阵,用于引导一个块稀疏正则项,以增强模型抗噪能力。实验结果表明,所提算法具有更高的聚类精确度和稳定性。 展开更多
关键词 对称矩阵因式分解 亲和矩阵 成对约束 正则 块稀疏
在线阅读 下载PDF
基于Hessian正则化的多视图联合非负矩阵分解算法 被引量:5
17
作者 王超锋 施俊 +1 位作者 吴金杰 朱捷 《计算机工程》 CAS CSCD 北大核心 2017年第11期134-139,共6页
非负矩阵在表征多视图数据时没有考虑数据本身的流型结构,不能有效表达数据内部信息。为此,提出一种基于Hessian正则化的非负矩阵分解算法。利用Hessian泛函的L2模,保持样本局部拓扑结构,并扩展成基于Hessian正则化的联合非负矩阵分解算... 非负矩阵在表征多视图数据时没有考虑数据本身的流型结构,不能有效表达数据内部信息。为此,提出一种基于Hessian正则化的非负矩阵分解算法。利用Hessian泛函的L2模,保持样本局部拓扑结构,并扩展成基于Hessian正则化的联合非负矩阵分解算法,以对多视图数据进行变换。实验结果表明,基于Hessian正则化的非负矩阵分解算法和基于Hessian正则化的联合非负矩阵分解算法的聚类精度以及互信息值都有较大提高,2种算法的数据变化性能都优于传统非负矩阵分解算法。 展开更多
关键词 Hessian正则 回归模型 矩阵分解 多视数据 聚类
在线阅读 下载PDF
基于L21范式的多图正则化非负矩阵分解方法 被引量:3
18
作者 周长宇 姚明海 李劲松 《计算机应用与软件》 北大核心 2021年第4期271-275,310,共6页
针对非负矩阵分解方法对原始数据的单图约束导致的结果未知性大、满足需求单一,以及大多非负矩阵分解方法存在对噪声、离群点较敏感导致的稀疏度和鲁棒性较差等问题,提出基于L21范式的多图正则化非负矩阵分解方法。采用L21范式,提升分... 针对非负矩阵分解方法对原始数据的单图约束导致的结果未知性大、满足需求单一,以及大多非负矩阵分解方法存在对噪声、离群点较敏感导致的稀疏度和鲁棒性较差等问题,提出基于L21范式的多图正则化非负矩阵分解方法。采用L21范式,提升分解结果的稀疏度和鲁棒性。构建多图约束的算法模型更好地保持数据的流形结构。构建目标函数并给出乘性迭代规则。通过在多个数据库上的实验表明,该方法在识别效果上有明显的提升。 展开更多
关键词 矩阵分解 正则 特征提取 迭代算法
在线阅读 下载PDF
基于图学习正则判别非负矩阵分解的人脸识别 被引量:2
19
作者 杜汉 龙显忠 李云 《计算机应用》 CSCD 北大核心 2021年第12期3455-3461,共7页
基于图正则非负矩阵分解(NMF)算法充分利用了高维数据通常位于一个低维流形空间的假设从而构造拉普拉斯矩阵,但该算法的缺点是构造出的拉普拉斯矩阵是提前计算得到的,并没有在乘性更新过程中对它进行迭代。为了解决这个问题,结合子空间... 基于图正则非负矩阵分解(NMF)算法充分利用了高维数据通常位于一个低维流形空间的假设从而构造拉普拉斯矩阵,但该算法的缺点是构造出的拉普拉斯矩阵是提前计算得到的,并没有在乘性更新过程中对它进行迭代。为了解决这个问题,结合子空间学习中的自表示方法生成表示系数,并进一步计算相似性矩阵从而得到拉普拉斯矩阵,而且在更新过程中对拉普拉斯矩阵进行迭代。另外,利用训练集的标签信息构造类别指示矩阵,并引入两个不同的正则项分别对该类别指示矩阵进行重构。该算法被称为图学习正则判别非负矩阵分解(GLDNMF),并给出了相应的乘性更新规则和目标函数的收敛性证明。在两个标准数据集上的人脸识别实验结果显示,和现有典型算法相比,所提算法的人脸识别的准确率提升了1%~5%,验证了其有效性。 展开更多
关键词 矩阵分解 自表示 学习 判别信息 人脸识别
在线阅读 下载PDF
自适应图正则化的低秩非负矩阵分解算法 被引量:2
20
作者 余沁茹 卢桂馥 李华 《智能系统学报》 CSCD 北大核心 2022年第2期325-332,共8页
图正则化(nonnegative matrix factorization,NMF)算法(graph regularization nonnegative matrix factorization,GNMF)仍存在一些不足之处:GNMF算法并没有考虑数据的低秩结构;在GNMF算法中,其拉普拉斯图是使用K近邻(K nearest neighbor... 图正则化(nonnegative matrix factorization,NMF)算法(graph regularization nonnegative matrix factorization,GNMF)仍存在一些不足之处:GNMF算法并没有考虑数据的低秩结构;在GNMF算法中,其拉普拉斯图是使用K近邻(K nearest neighbor,KNN)方法预先定义的,而KNN方法无法总是获得最优图解,从而使得GNMF算法的性能不能达到最优。为此,本文提出了一种自适应图正则化的非负矩阵分解算法(nonnegative low-rank matrix factorization with adaptive graph neighbors,NLMFAN)。一方面,通过引入低秩约束,使得NLMFAN可以获得原始数据集的有效低秩结构;另一方面,设计了一种通过自适应求解相似度矩阵的方法来进行图的构建,即图的构造和矩阵分解的结果被融入一个整体的框架中,使得图中节点的相似性是自动从数据中学习得到的。此外,本文还给出了一种求解NLMFAN的有效算法。在多种数据集上的实验验证了本文所提出的算法的有效性。 展开更多
关键词 聚类 特征提取 降维 流形学习 矩阵分解 低秩约束 正则 自适应聚类
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部