期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
金融文本特征挖掘及动态融合因子策略研究 被引量:1
1
作者 张伟 朱汉卿 高志刚 《计算机工程与应用》 CSCD 北大核心 2023年第8期297-305,共9页
目前的金融文本分析受到非规范性金融文本的局限性,所提取的金融特征有效性不足。为解决这一问题,提出了以券商研究报告为研究对象的规范性金融文本特征挖掘模型(normative finanical text feature mining,NFTFM),通过构建规范性金融情... 目前的金融文本分析受到非规范性金融文本的局限性,所提取的金融特征有效性不足。为解决这一问题,提出了以券商研究报告为研究对象的规范性金融文本特征挖掘模型(normative finanical text feature mining,NFTFM),通过构建规范性金融情感词典(normative finanical text sentiment dictionary,NFTSD)充分挖掘券商报告语义,并采用K邻近算法(K-nearest neighbor,KNN)实现报告作者评价态度分类,将态度分类结果按照时序维度整合为评价一致性因子(rate volatility,RC)和评价特征因子(rate consistency,RV)两类金融特征因子;针对传统量化多因子模型的因子权重无法自适应市场变化的问题,提出动态优化的融合因子策略,通过遗传算法动态优化因子权重。为验证规范性金融特征因子的有效性以及动态优化融合因子策略的效果,以RC、RV因子为基础因子集合,针对中证500股票构建多因子策略实例并展开历史周期回测。结果表明,策略收益相比于基准收益有明显提升,且对于不同的市场环境都具有较好的适应能力,表明NFTFM模型有效地提取了规范性金融特征因子,且动态优化的融合因子策略下的各类因子具有自适应市场变化的能力。 展开更多
关键词 规范性金融文本 数据分析 K邻近算法(KNN) 多因子策略 遗传算法
在线阅读 下载PDF
多因子量化模型在投资组合中的应用——基于LASSO与Elastic Net的比较研究 被引量:20
2
作者 谢合亮 胡迪 《统计与信息论坛》 CSSCI 北大核心 2017年第10期36-42,共7页
多因子模型一直是量化投资领域的重要方法,而如何选择有效因子并确定因子权重从而构建有效的投资组合是研究者重点讨论的议题。在研究打分法和普通最小二乘法确定因子权重的基础上,引入LASSO和弹性网(Elastic Net)两类前沿方法进行因子... 多因子模型一直是量化投资领域的重要方法,而如何选择有效因子并确定因子权重从而构建有效的投资组合是研究者重点讨论的议题。在研究打分法和普通最小二乘法确定因子权重的基础上,引入LASSO和弹性网(Elastic Net)两类前沿方法进行因子筛选并确定因子权重,利用沪深300指数成份股进行回测,研究结果表明,Elastic Net方法比OLS和LASSO方法更能够筛选出有效因子,并构建出有效的投资组合,从而帮助投资者获得更高的超额收益。该模型对量化投资策略的设计具有重要的实际意义。 展开更多
关键词 LASSO 弹性网 量化投资 多因子策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部