期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于贝叶斯ELM的隐层节点数稀疏性研究
被引量:
1
1
作者
吴永存
《控制工程》
CSCD
北大核心
2017年第12期2539-2543,共5页
在贝叶斯极限学习机中,模型隐层节点数的确定尚无理论依据,一种基于多响应稀疏回归方法(Multiresponse Sparse Regression,MRSR)的隐层节点数稀疏方法由此被提出。首先根据传统神经网络确定隐层节点数的经验方法设定模型的隐层节点数为...
在贝叶斯极限学习机中,模型隐层节点数的确定尚无理论依据,一种基于多响应稀疏回归方法(Multiresponse Sparse Regression,MRSR)的隐层节点数稀疏方法由此被提出。首先根据传统神经网络确定隐层节点数的经验方法设定模型的隐层节点数为区间范围的上限,然后利用MRSR方法对模型输出矩阵和标签向量进行稀疏性回归分析求解,最后能得到一个既能对隐层节点数进行稀疏也能对样本个数进行稀疏的贝叶斯极限学习机模型。仿真结果表明该方法在满足精度要求的前提下能剔除冗余的隐层节点,进一步实现了模型的稀疏性。
展开更多
关键词
贝叶斯极限学习机
隐层节点数
多响应稀疏回归方法
BAYESIAN
EXTREME
learning
machine
(BELM)
在线阅读
下载PDF
职称材料
题名
基于贝叶斯ELM的隐层节点数稀疏性研究
被引量:
1
1
作者
吴永存
机构
浙江国华宁海电厂
出处
《控制工程》
CSCD
北大核心
2017年第12期2539-2543,共5页
文摘
在贝叶斯极限学习机中,模型隐层节点数的确定尚无理论依据,一种基于多响应稀疏回归方法(Multiresponse Sparse Regression,MRSR)的隐层节点数稀疏方法由此被提出。首先根据传统神经网络确定隐层节点数的经验方法设定模型的隐层节点数为区间范围的上限,然后利用MRSR方法对模型输出矩阵和标签向量进行稀疏性回归分析求解,最后能得到一个既能对隐层节点数进行稀疏也能对样本个数进行稀疏的贝叶斯极限学习机模型。仿真结果表明该方法在满足精度要求的前提下能剔除冗余的隐层节点,进一步实现了模型的稀疏性。
关键词
贝叶斯极限学习机
隐层节点数
多响应稀疏回归方法
BAYESIAN
EXTREME
learning
machine
(BELM)
Keywords
hidden layer nodes
multiresponse sparse regression
分类号
TP273 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于贝叶斯ELM的隐层节点数稀疏性研究
吴永存
《控制工程》
CSCD
北大核心
2017
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部