期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最大化交叉互信息的对称IB算法 被引量:3
1
作者 娄铮铮 叶阳东 《计算机学报》 EI CSCD 北大核心 2016年第8期1515-1527,共13页
对称IB(Symmetric Information Bottleneck)通过行、列压缩变量之间的相互协作来挖掘数据中的双向压缩模式.由于行、列压缩变量不能完全承载行、列基层变量中所蕴含的特征信息,从而导致对称IB所得的数据双向压缩模式与基层变量所蕴含的... 对称IB(Symmetric Information Bottleneck)通过行、列压缩变量之间的相互协作来挖掘数据中的双向压缩模式.由于行、列压缩变量不能完全承载行、列基层变量中所蕴含的特征信息,从而导致对称IB所得的数据双向压缩模式与基层变量所蕴含的内在模式之间存在一定的偏离.针对该问题,通过最大化地保存压缩变量与基层变量交叉之间的互信息,将基层变量引入到数据的双向压缩中,使它们协助压缩变量共同来学习联合分布中的双向压缩模式,提出交叉对称IB:ICSIB(Inter-Correlated Symmetric Information Bottleneck).ICSIB算法采用交错的顺序"抽取-合并"迭代过程来优化压缩变量与基层变量交叉之间的互信息,可保证得到目标函数的一个局部优解.实验结果表明,在基层特征变量的协助下,ICSIB算法得到的数据双向压缩模式更接近于数据中真实的内在模式,并可有效地应用于数据的联合聚类中. 展开更多
关键词 ib方法 多变量ib 对称ib 双向压缩 联合聚类 数据挖掘
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部