期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ACO-ANFIS的多变量生产过程在线质量预测
1
作者 杨薪玉 刘玉敏 王宁 《统计与决策》 北大核心 2025年第13期70-75,共6页
数据的高维度和非线性是影响多变量生产过程在线质量预测的瓶颈。文章将自适应神经模糊推理系统(ANFIS)和蚁群优化算法(ACO)相结合,提出了一种基于ACO-ANFIS的多变量生产过程在线质量预测新方法。首先,对生产过程数据采用模糊C均值聚类... 数据的高维度和非线性是影响多变量生产过程在线质量预测的瓶颈。文章将自适应神经模糊推理系统(ANFIS)和蚁群优化算法(ACO)相结合,提出了一种基于ACO-ANFIS的多变量生产过程在线质量预测新方法。首先,对生产过程数据采用模糊C均值聚类进行数据降维,有效地减少了模糊推理系统的规则数,提高了ANFIS模型的泛化能力;其次,采用ACO算法对ANFIS模型参数进行优化,提高了模型的预测精度;最后,运用所提方法对青霉素发酵过程进行实证分析,并与GA-ANFIS和PSO-ANFIS预测模型进行对比,验证了所提方法的有效性与准确性。 展开更多
关键词 多变量生产过程 质量预测 自适应神经模糊推理系统 蚁群优化算法
在线阅读 下载PDF
基于果蝇优化算法的多元质量控制故障模式诊断 被引量:3
2
作者 杨明顺 梁艳杰 +2 位作者 雷丰丹 刘永 杜少博 《西安理工大学学报》 CAS 北大核心 2015年第2期138-143,共6页
针对目前以神经网络为代表的主流智能故障模式诊断方法存在训练时间长、收敛速度慢、容易陷入局部最优等缺陷,本文将果蝇优化算法用于多变量生成过程故障模式诊断,重点分析了果蝇优化算法(FOA)的原理及其搜索优势,设计了一种基于FOA的... 针对目前以神经网络为代表的主流智能故障模式诊断方法存在训练时间长、收敛速度慢、容易陷入局部最优等缺陷,本文将果蝇优化算法用于多变量生成过程故障模式诊断,重点分析了果蝇优化算法(FOA)的原理及其搜索优势,设计了一种基于FOA的多变量生产过程故障模式诊断算法。将所设计的果蝇优化算法应用于汽车曲轴生产过程控制,并与神经网络模型处理结果进行对比。对比结果表明,果蝇优化算法训练时间短,收敛速度快且诊断结果更加准确。 展开更多
关键词 多变量生产过程 果蝇优化算法 过程控制 故障诊断 BP神经网络 质量控制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部