期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究
1
作者
黄林显
徐征和
+7 位作者
支传顺
李双
刘治政
邢立亭
朱恒华
王晓玮
毕雯雯
胡晓农
《地学前缘》
2026年第1期419-431,共13页
岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大...
岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大误差。论文提出一种耦合注意力机制(Attention)和长短时记忆(LSTM,Long Short-Term Memory)神经网络的多变量趵突泉地下水位预测模型,利用泉域2013—2024年日降水(代表补给项)及水汽压、日气温和开采量(代表排泄项)进行模型训练和预测,结果表明:①采用BEAST(Bayesian Estimator of Abrupt Change,Seasonality,and Trend)算法对1958—2024年趵突泉水位时间序列进行分解,共识别出四个突变点并以此为依据将水位动态划分为四个阶段;②互相关分析揭示降雨和趵突泉水位动态变化之间存在2~3个月的时间滞后,表明两者之间动态变化较为一致;③所提出的预测模型以多种变量(降水量、水汽压、气温及开采量)作为模型输入,不同变量间的交互作用可相互验证,能有效提升预测精度;④采用正弦函数拟合日气温数据,可消除测量误差影响,能在一定程度上提高预测精度;⑤相较于单一LSTM神经网络和门控循环单元(GRU)神经网络,LSTM_Attention神经网络由于引入注意力机制,能聚焦更重要特征的影响,从而显著提高预测精度,其水位预测RMSE和R 2值分别为0.13 m和0.94。总体来说,本文所提出的LSTM_Attention神经网络岩溶地下水位预测模型具有较强的准确性和稳定性,可为岩溶地下水位精确预测提供借鉴。
展开更多
关键词
北方岩溶
水位预测
多变量模拟
LSTM_Attention神经网络
在线阅读
下载PDF
职称材料
题名
基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究
1
作者
黄林显
徐征和
支传顺
李双
刘治政
邢立亭
朱恒华
王晓玮
毕雯雯
胡晓农
机构
济南大学水利与环境学院
出处
《地学前缘》
2026年第1期419-431,共13页
基金
国家自然科学基金项目(42577088)
国家自然科学基金重点项目(42430712)
山东省自然科学基金项目(ZR2024MD009)。
文摘
岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大误差。论文提出一种耦合注意力机制(Attention)和长短时记忆(LSTM,Long Short-Term Memory)神经网络的多变量趵突泉地下水位预测模型,利用泉域2013—2024年日降水(代表补给项)及水汽压、日气温和开采量(代表排泄项)进行模型训练和预测,结果表明:①采用BEAST(Bayesian Estimator of Abrupt Change,Seasonality,and Trend)算法对1958—2024年趵突泉水位时间序列进行分解,共识别出四个突变点并以此为依据将水位动态划分为四个阶段;②互相关分析揭示降雨和趵突泉水位动态变化之间存在2~3个月的时间滞后,表明两者之间动态变化较为一致;③所提出的预测模型以多种变量(降水量、水汽压、气温及开采量)作为模型输入,不同变量间的交互作用可相互验证,能有效提升预测精度;④采用正弦函数拟合日气温数据,可消除测量误差影响,能在一定程度上提高预测精度;⑤相较于单一LSTM神经网络和门控循环单元(GRU)神经网络,LSTM_Attention神经网络由于引入注意力机制,能聚焦更重要特征的影响,从而显著提高预测精度,其水位预测RMSE和R 2值分别为0.13 m和0.94。总体来说,本文所提出的LSTM_Attention神经网络岩溶地下水位预测模型具有较强的准确性和稳定性,可为岩溶地下水位精确预测提供借鉴。
关键词
北方岩溶
水位预测
多变量模拟
LSTM_Attention神经网络
Keywords
northern karst
prediction of groundwater dynamics
multivariate modeling
LSTM-Attention neural network
分类号
P641.2 [天文地球]
TP183 [天文地球—地质矿产勘探]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究
黄林显
徐征和
支传顺
李双
刘治政
邢立亭
朱恒华
王晓玮
毕雯雯
胡晓农
《地学前缘》
2026
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部