期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多参数磁共振影像组学的乳腺癌病理信息预测模型研究 被引量:10
1
作者 娄潇方 范明 +2 位作者 许茂盛 王世威 厉力华 《中国生物医学工程学报》 CAS CSCD 北大核心 2020年第5期513-523,共11页
联合动态增强磁共振成像(DCE-MRI)、T2加权成像(T2WI)以及弥散加权成像(DWI)的影像特征,建立基于多参数影像组学的预测模型,分别对乳腺癌分子分型、组织学分级和Ki-67表达进行预测。采集150例术前、化疗前的浸润性导管癌患者乳腺MRI数据... 联合动态增强磁共振成像(DCE-MRI)、T2加权成像(T2WI)以及弥散加权成像(DWI)的影像特征,建立基于多参数影像组学的预测模型,分别对乳腺癌分子分型、组织学分级和Ki-67表达进行预测。采集150例术前、化疗前的浸润性导管癌患者乳腺MRI数据,获取DCE-MRI、T2WI和DWI影像。分割各参数影像的病灶区域,并提取多参数影像特征。在训练集采用支持向量机递归特征消除(SVM-RFE)算法,获得影像组学最优特征子集并构建基于SVM的预测模型,在测试集中测试模型性能。采用概率平均法、概率投票法和概率模型优化法,分别将基于不同参数影像构建的预测模型进行融合,得到多参数影像联合预测结果,并计算ROC曲线下的面积(AUC)评估模型的分类性能。单参数影像模型预测Luminal A、Luminal B、HER2和Basal-like等4种分子分型的最佳AUC分别为0.672 1、0.694 0、0.677 7和0.708 6,多参数影像模型的预测结果提高到AUC分别为0.799 5、0.727 9、0.737 5和0.792 5。单参数影像模型预测分级的最佳AUC为0.753 3,多参数影像模型的预测结果提高到0.801 7。单参数影像模型预测Ki-67表达的最佳AUC为0.664 7,多参数影像模型预测结果提高到0.771 8。相比于单参数影像模型的预测结果,多参数影像模型的预测结果有所提升,且差异具有显著性(P<0.05)。实验结果表明,采用多参数磁共振影像(DCE-MRI、T2WI以及DWI)组学的联合,可以显著提高单一参数影像模型预测乳腺癌病理信息的性能,对乳腺癌的诊断和个性化治疗方案的选择具有重要意义。 展开更多
关键词 乳腺癌 多参数磁共振影像 组织学分级 KI-67 分子分型
在线阅读 下载PDF
基于多参数MRI影像组学和深度学习的急性脑梗死患者缺血半暗带预测研究
2
作者 陈媛慧 雷雨萌 史文文 《中国医科大学学报》 北大核心 2025年第5期455-460,共6页
目的探讨基于多参数磁共振成像(MRI)影像组学和深度学习构建的模型预测急性脑梗死患者缺血半暗带(IP)的临床可行性。方法选取2020年1月至2024年1月我院收治的105例急性脑梗死患者作为研究对象,依据MRI-扩散加权成像(DWI)检查结果将患者... 目的探讨基于多参数磁共振成像(MRI)影像组学和深度学习构建的模型预测急性脑梗死患者缺血半暗带(IP)的临床可行性。方法选取2020年1月至2024年1月我院收治的105例急性脑梗死患者作为研究对象,依据MRI-扩散加权成像(DWI)检查结果将患者分为无IP组(n=36)和IP组(n=69)。统计2组患者的临床资料并筛选多参数MRI影像组学特征,构建临床模型、影像组学模型和深度学习模型并评价其区分力。构建融合模型,采用受试者操作特征(ROC)曲线、校准曲线、临床决策曲线评价4种模型的预测效能。结果入院美国国立卫生院卒中量表(NIHSS)评分、各向异性分数(FA)、表观扩散系数(ADC)、平均扩散系数(DCavg)、N-乙酰天门冬氨酸(NAA)增加是患者发生IP的保护因素,乳酸(Lac)增加是危险因素(P<0.05);6个深度学习模型中,支持向量机模型性能最优,准确度为0.952(100/105),灵敏度为0.957(66/69),特异度为0.944(34/36);3种模型对患者IP发生情况均有较好的区分力;4种模型的区分度较高,准确性和有效性较好,且融合模型的预测效能最高。结论基于临床特征、多参数MRI影像组学和深度学习构建的融合模型能够实现对急性脑梗死患者IP的准确预测,并提供个性化预测结果。 展开更多
关键词 急性脑梗死 缺血半暗带 多参数磁共振成像影像组学 深度学习 融合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部