期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络和多判别特征的跌倒检测算法 被引量:9
1
作者 王鑫 郑晓岩 +2 位作者 高焕兵 曾子铭 张吟龙 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第3期452-462,共11页
针对传统跌倒检测算法中特征提取不充分、跌倒判别条件泛化性差、实时性差等问题,提出一种基于卷积神经网络和多判别特征的跌倒检测算法.为了完成更丰富的特征信息提取并保证实时性,首先,使用MobileNetV3轻量级网络完成对输入图片中人... 针对传统跌倒检测算法中特征提取不充分、跌倒判别条件泛化性差、实时性差等问题,提出一种基于卷积神经网络和多判别特征的跌倒检测算法.为了完成更丰富的特征信息提取并保证实时性,首先,使用MobileNetV3轻量级网络完成对输入图片中人物特征信息的准确、快速提取;其次,使用3个小型卷积核的叠加和残差网络,保证网络在具有相同感受野的情况下降低网络模型的参数量,以保证图像中人体关键点检测的实时性;再次,为了提高跌倒状态判别的准确性,将人体躯干、四肢与地面间夹角,以及人体标定框高宽比变化作为跌倒判别特征;最后,设计了一个基于云服务器的物联网系统,以缓解用户终端计算能力不足导致实时性差的问题.在URFD数据集和自建数据集上进行大量实验的结果表明,该算法的检测准确率分别为99.0%和98.5%,该算法相对于传统跌倒检测算法具有更高的准确性和更好的普适性. 展开更多
关键词 跌倒检测 卷积神经网络 多判别特征 物联网 云服务器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部