期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于多分辨率特征融合的葡萄尺寸检测 被引量:3
1
作者 李颀 杨军 《江苏农业学报》 CSCD 北大核心 2022年第2期394-402,共9页
针对葡萄特征提取不够充分且果粒排列密集相互遮挡难以准确检测的问题,以陕西省鄠邑区户太8号葡萄为研究对象,提出一种基于特征金字塔网络(FPN)特征融合的Faster R-CNN卷积神经网络模型完成复杂背景情况下葡萄果粒的检测与识别。以ResNe... 针对葡萄特征提取不够充分且果粒排列密集相互遮挡难以准确检测的问题,以陕西省鄠邑区户太8号葡萄为研究对象,提出一种基于特征金字塔网络(FPN)特征融合的Faster R-CNN卷积神经网络模型完成复杂背景情况下葡萄果粒的检测与识别。以ResNet50为主干网络,引入金字塔结构,增强网络模型对葡萄果粒不同分辨率特征的提取能力,同时加入GA-RPN网络生成自适应锚框,引入遮挡补偿机制,以解决密集葡萄果粒存在的遮挡问题。模型验证结果表明,本研究提出的模型精度均值(AP)在候选框与原标记框的重叠率(IOU)阈值为50时可达95.9%,对葡萄果粒、果穗的检测准确率分别为95.8%、96.1%,相比于原始Faster R-CNN模型识别性能更优。利用双目视觉算法对葡萄果粒进行尺寸测量,在最佳测量距离(0.6~1.4 m)其相对误差可控制在2%以内。 展开更多
关键词 葡萄无损检测 多分辨率特征融合 遮挡补偿 机器视觉
在线阅读 下载PDF
基于多分辨率特征融合的任意尺度图像超分辨率重建 被引量:7
2
作者 范文卓 吴涛 +4 位作者 许俊平 李庆庆 张建林 李美惠 魏宇星 《计算机工程》 CAS CSCD 北大核心 2023年第9期217-225,共9页
传统深度学习的图像超分辨率重建网络仅在固定分辨率上提取特征,存在无法综合高级语义信息、只能以特定尺度因子重建图像、泛化能力较弱、网络参数量较大等问题。提出一种基于多分辨率特征融合的任意尺度图像超分辨率重建算法MFSR。在... 传统深度学习的图像超分辨率重建网络仅在固定分辨率上提取特征,存在无法综合高级语义信息、只能以特定尺度因子重建图像、泛化能力较弱、网络参数量较大等问题。提出一种基于多分辨率特征融合的任意尺度图像超分辨率重建算法MFSR。在多分辨率特征融合编码阶段设计多分辨率特征提取模块以提取不同分辨率特征,通过构建双重注意力模块增强网络特征提取能力,使不同分辨率特征之间进行充分交互,以获取信息丰富的融合特征图。在图像重建阶段利用多层感知机对融合特征图进行解码,实现任意尺度的图像超分辨率重建。实验结果表明,在Set5数据集上分别以尺度因子2、3、4、6、8进行测试,所提算法的峰值信噪比分别为38.62、34.70、32.41、28.96、26.62 dB,模型参数量为0.72×106,在大幅减少参数量的同时能保持重建质量,可以实现任意尺度的图像超分辨率重建,性能优于SRCNN、VDSR、EDSR等主流算法。 展开更多
关键词 多分辨率特征融合 分辨率重建 任意尺度 双重注意力 特征交互
在线阅读 下载PDF
基于多分辨率特征和时频注意力的环境声音分类 被引量:3
3
作者 刘慧 李小霞 何宏森 《计算机应用研究》 CSCD 北大核心 2021年第12期3569-3573,共5页
针对环境声音分类(ESC),提出了一种基于多分辨率特征和时频注意力的卷积神经网络环境声音分类方法。首先,相较单一分辨率的谱图,多通道多分辨率特征可以丰富特征信息,实现不同特征分辨率之间信息互补,增强特征的表达能力;其次,针对声信... 针对环境声音分类(ESC),提出了一种基于多分辨率特征和时频注意力的卷积神经网络环境声音分类方法。首先,相较单一分辨率的谱图,多通道多分辨率特征可以丰富特征信息,实现不同特征分辨率之间信息互补,增强特征的表达能力;其次,针对声信号提出了一种时频注意力模块,该模块先利用不同大小的一维卷积分别关注时域和频域有效信息,再用二维卷积将两者进行融合,从而抑制环境声中背景噪声并消除由多通道多分辨率带来的冗余信息干扰。实验结果表明,在ESC-10和ESC-50两个基准数据集上的分类准确率达到了98.50%和88.46%,与现有的最新方法相比分别提高了2.70%和0.76%。 展开更多
关键词 环境声音分类 卷积神经网络 时频注意力 多通道特征 多分辨率特征
在线阅读 下载PDF
有效频带多分辨率特征提取及说话人年龄识别 被引量:4
4
作者 杜先娜 俞一彪 《信号处理》 CSCD 北大核心 2016年第9期1101-1107,共7页
针对文本无关非特定说话人年龄识别,本文提出了一种基于有效频带多分辨率特征的统计分析识别方法。输入语音,通过小波包变换进行有效频带分解,然后将各有效频带的小波包系数连接构成一个整体计算美尔频率倒谱系数,得到有效频带多分辨率... 针对文本无关非特定说话人年龄识别,本文提出了一种基于有效频带多分辨率特征的统计分析识别方法。输入语音,通过小波包变换进行有效频带分解,然后将各有效频带的小波包系数连接构成一个整体计算美尔频率倒谱系数,得到有效频带多分辨率特征参数WPMFC(Wavelet Packet Mel-Frequency Cepstrum),说话人按年龄划分为儿童、青年、中年和老年四个阶段,并进一步按性别训练各年龄段语音得到8个高斯混合模型。测试语音依据最大似然准则进行识别判决。实验对本文提出的方法与传统的短时谱统计分析方法进行了比较,结果显示本文提出的方法有较好的识别性能,集内平均识别率达到65.17%。同时,实验结果也说明相对语音文本变化的影响,不同说话人发音特征的变化对识别性能的影响更大。 展开更多
关键词 说话人年龄识别 有效频带 多分辨率特征 小波包变换
在线阅读 下载PDF
顾及多分辨率特征的复合字典城中村识别方法
5
作者 邢若芸 冉树浩 +2 位作者 高贤君 杨元维 方军 《测绘通报》 CSCD 北大核心 2023年第4期41-48,共8页
城中村作为一种特殊的城市聚落类型,对其进行精确有效的监控识别有助于实现城乡协调发展、优化城乡生态环境。现有面向对象的城中村识别方法通常需要大量样本数据,导致训练成本较高,数据更新效率偏低。针对以上问题,本文提出了顾及多分... 城中村作为一种特殊的城市聚落类型,对其进行精确有效的监控识别有助于实现城乡协调发展、优化城乡生态环境。现有面向对象的城中村识别方法通常需要大量样本数据,导致训练成本较高,数据更新效率偏低。针对以上问题,本文提出了顾及多分辨率特征的复合字典城中村识别方法。首先通过密集格网采样提取尺度不变特征转换(SIFT)全局特征,并与多分辨率颜色矢量角直方图特征融合,形成视觉词典;然后将影像表示为视觉词频率直方图;最后使用随机森林分类器进行分类,以实现场景尺度的城中村识别。以高分二号影像为测试数据对该方法进行验证,结果表明,其总体精度达90.08%,Kappa系数达80.16%,相较于加速稳健特征(SURF)、SIFT、VGG16、ResNet50,总体精度分别高出8.99%、3.51%、4.78%、2.28%。 展开更多
关键词 城中村识别 分辨率遥感影像 复合字典 多分辨率颜色特征 直方图特征融合
在线阅读 下载PDF
基于多谱注意力高分辨率网络的人体姿态估计 被引量:7
6
作者 马皖宜 张德平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第8期1283-1292,共10页
针对人体姿态估计中多分辨率特征融合时出现的特征信息丢失的问题,基于Lite-HRNet引入多谱注意力机制,设计了一个轻量级的结合多谱注意力机制的高分辨率人体姿态估计网络LiteMSA-HRNet.将多谱注意力机制融入Lite-HRNet,利用多个频率分量... 针对人体姿态估计中多分辨率特征融合时出现的特征信息丢失的问题,基于Lite-HRNet引入多谱注意力机制,设计了一个轻量级的结合多谱注意力机制的高分辨率人体姿态估计网络LiteMSA-HRNet.将多谱注意力机制融入Lite-HRNet,利用多个频率分量,提取更丰富的特征信息,获得更优的多分辨率特征重复融合的效果;在主体网络后利用一个反卷积模块,将其生成的更高分辨率特征和主体网络生成的高分辨率特征进行融合;引入通道置换、逐点分组卷积和深度可分离卷积,轻量化反卷积模块中的残差块,提升网络定位关键点的速度.在COCO2017数据集上的实验结果表明,与其他网络相比,Lite MSA-HRNet在人体姿态估计精度和复杂度之间取得了较好的平衡结果. 展开更多
关键词 人体姿态估计 多谱注意力 分辨率网络 轻量化网络 多分辨率特征融合
在线阅读 下载PDF
引入注意力机制的多分辨率人体姿态估计研究 被引量:4
7
作者 张越 黄友锐 刘鹏坤 《计算机工程与应用》 CSCD 北大核心 2021年第8期126-132,共7页
针对人体姿态估计任务中多分辨率特征表征直接融合时存在无法有效利用特征图空间特征信息的问题,基于High-Resolution Net(HRNet)进行结构设计,构建出结合了通道域注意力和空间域注意力机制的多分辨率人体姿态估计网络GCT-Nonlocal Net(... 针对人体姿态估计任务中多分辨率特征表征直接融合时存在无法有效利用特征图空间特征信息的问题,基于High-Resolution Net(HRNet)进行结构设计,构建出结合了通道域注意力和空间域注意力机制的多分辨率人体姿态估计网络GCT-Nonlocal Net(GNNet),提出了一种基于注意力机制的多分辨率表征融合方法,在不同分辨率表征融合前由空间注意力提取出各分辨率表征更有用的空间特征信息来改进融合单元,使得各分辨率表征间的信息融合效果更佳,最终输出的高分辨率表征含有更丰富的特征信息,同时构造了Gateneck模块和Gateblock模块,其通过引入通道注意力更明确地对通道关系建模从而高效地提取通道信息。在MS COCOVAL 2017进行验证,结果显示提出的GNNet相较于SOTA级表现的HRNet在相当参数量与运算量的情况下获得了更高的准确度,mAP提高了1.4个百分点。实验结果表明,所提方法有效地提高了多分辨率特征表征融合效果。 展开更多
关键词 卷积神经网络 人体姿态估计 多分辨率特征表征融合 空间域注意力机制 通道域注意力机制
在线阅读 下载PDF
基于多时间特征融合网络的ADS-B实采信号分离
8
作者 王文益 袁梦 《电讯技术》 北大核心 2024年第9期1394-1399,共6页
不同于以往单天线广播式自动相关监视(Automatic Dependent Surveillance-Broadcast,ADS-B)信号分离中利用仿真的ADS-B信号制作数据集,将单天线接收的真实飞机发射的ADS-B原始信号通过调整信号起始时间以及功率并人为增加噪声来制作数... 不同于以往单天线广播式自动相关监视(Automatic Dependent Surveillance-Broadcast,ADS-B)信号分离中利用仿真的ADS-B信号制作数据集,将单天线接收的真实飞机发射的ADS-B原始信号通过调整信号起始时间以及功率并人为增加噪声来制作数据集。为了提高信号分离的时域波形精度,提出一种多分辨率多时间特征融合重采样(Multi-Temporal fusion Resampling of Multi-Resolution Features,MTRM-RF)网络,通过卷积将信号转化成不同采样率的信号并分别使用多层堆叠逐渐膨胀的一维卷积提取不同时间间隔的特征,以获得更多的时间信息。对多种基于深度学习的语音分离网络进行比较发现,MTRM-RF网络能够有效地融合ADS-B信号的不同采样率、不同时间间隔采样点的特征进行训练。并且随着训练集数据量的增加,分离信号的平均解码正确率达到88.39%,证明该网络可有效分离单天线实采的ADS-B交织信号。 展开更多
关键词 广播式自动相关监视 深度学习 信号分离 单天线 多分辨率多时间特征融合重采样网络
在线阅读 下载PDF
结合通道注意力的特征融合多人姿态估计算法 被引量:3
9
作者 黄晨 高岩 《小型微型计算机系统》 CSCD 北大核心 2021年第1期142-146,共5页
为了提高二维复杂场景下多人姿态估计准确度和速度,提出了一种Mobile-YOLOv3模型与多尺度特征融合全卷积网络相结合的自顶向下多人姿态估计方法.利用深度可分离卷积改进YOLOv3网络以作为高效的人体目标检测器.针对网络特征下采样过程中... 为了提高二维复杂场景下多人姿态估计准确度和速度,提出了一种Mobile-YOLOv3模型与多尺度特征融合全卷积网络相结合的自顶向下多人姿态估计方法.利用深度可分离卷积改进YOLOv3网络以作为高效的人体目标检测器.针对网络特征下采样过程中上层高分辨率信息不断遗失问题,在经典U型网络结构中嵌入多尺度特征融合模块,从而使网络中的低尺度特征也包含高分辨率信息,并在特征融合模块中引入通道注意力机制,进一步突出多尺度融合特征图的关键通道信息.试验结果表明:相比于堆叠沙漏网络(Stacked Hourglass Network,SHN)和级联金字塔网络(Cascaded Pyramid Network,CPN),文中所提出的人体姿态估计算法在COCO数据集上的姿态估计平均准确率分别提高了4.7和3.7. 展开更多
关键词 多人姿态估计 深度可分离卷积 U型网络 多分辨率特征 通道域注意力
在线阅读 下载PDF
基于多特征扩展pLSA模型的场景图像分类 被引量:10
10
作者 江悦 王润生 《信号处理》 CSCD 北大核心 2010年第4期539-544,共6页
场景图像分类近年来受到人们的广泛关注,而基于统计模型的方法更是场景分类中的研究热点。我们提出了一种新的基于多特征融合和扩展pLSA模型的场景图像分类框架。对每幅图像首先用多尺度规则分割确定局部基元,然后提取每个局部基元的多... 场景图像分类近年来受到人们的广泛关注,而基于统计模型的方法更是场景分类中的研究热点。我们提出了一种新的基于多特征融合和扩展pLSA模型的场景图像分类框架。对每幅图像首先用多尺度规则分割确定局部基元,然后提取每个局部基元的多分辨率直方图矩特征和SIFT特征,最后用扩展的概率生成模型对图像集进行建模,测试。我们的方法不仅能够很好的表示图像的语义特性而且在模型的训练阶段是无监督的。我们针对目前常用的3个数据库,做了三组对比实验,均取得了比以前的方法更好的识别结果。 展开更多
关键词 多分辨率直方图矩特征 场景分类 概率生成模型
在线阅读 下载PDF
基于语义信息的无监督单目深度估计 被引量:1
11
作者 李颀 李煜哲 《传感器与微系统》 CSCD 北大核心 2024年第9期157-160,共4页
随着深度学习的发展,无监督单目深度估计成为计算机视觉的研究热点。由于深度图存在轮廓不清晰、深度估计不准确等问题,以编—解码器结构为基础,提出一种基于语义信息的无监督单目深度估计网络,为了获取更为清晰的轮廓信息,本文在编解... 随着深度学习的发展,无监督单目深度估计成为计算机视觉的研究热点。由于深度图存在轮廓不清晰、深度估计不准确等问题,以编—解码器结构为基础,提出一种基于语义信息的无监督单目深度估计网络,为了获取更为清晰的轮廓信息,本文在编解码器之间通过空洞空间卷积池化金字塔(ASPP)层进行语义信息的细化,提高生成的图像质量;该网络通过在编码器到解码器的跳层连接实现对多分辨率特征的提取,在编码器部分采用改进的高分辨率网络(HRNet)融合不同层的多分辨率特征,在解码前使用串联策略融合中间阶段的输出,提高深度估计的准确率。在KITTI数据集上的实验结果表明,本文方法的误差评价指标相较于目前的深度估计方法更低,在3个深度估计准确率评价指标上达到了89.4%,96.3%,98.1%,具有较好的准确性。 展开更多
关键词 深度估计 无监督学习 多分辨率特征 语义信息 编—解码结构
在线阅读 下载PDF
多级多尺神经网络自搜索的焊缝缺陷语义分割
12
作者 张睿 李吉 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第11期1750-1760,共11页
为进一步提高焊缝缺陷X-ray底片低质影像语义分割精度,降低人工设计网络主观影响及耗时等问题,提出一种多级多尺神经网络自搜索的焊缝缺陷语义分割方法.通过对多尺度轻量化候选操作、通道注意力机制和多层级动态神经网络架构的设计,从... 为进一步提高焊缝缺陷X-ray底片低质影像语义分割精度,降低人工设计网络主观影响及耗时等问题,提出一种多级多尺神经网络自搜索的焊缝缺陷语义分割方法.通过对多尺度轻量化候选操作、通道注意力机制和多层级动态神经网络架构的设计,从不同维度提升网络对低质影像缺陷特征提取的表达能力;同时对网络训练早期与最终识别性能之间的潜在关联探索,提出使用固定采样逐步确定最优候选操作的渐进式快速神经架构搜索方法.在架构搜索阶段使用自行采集、标注的483幅X-ray焊缝缺陷图像,经过随机裁剪、旋转、平移等数据增强操作进行架构寻优,最终以较低的搜索成本自动构建出焊缝缺陷语义分割网络.实验表明,所提方法对X-ray焊缝缺陷进行语义分割最终mIoU指数达到了49.23%,高于人工设计网络的45.41%和直接使用模型迁移的28.86%,网络自搜索速度和分割效果提升明显. 展开更多
关键词 语义分割 多分辨率多尺度特征融合 神经架构搜索 焊缝缺陷 无损检测
在线阅读 下载PDF
改进深度学习优化电力设备缺陷图像识别 被引量:6
13
作者 于彦良 李静力 王斌 《机械设计与制造》 北大核心 2021年第7期176-178,183,共4页
红外图像特征对具有发热特征的电力特设缺陷具有较好的表达能力,随着电力企业设备红外图像的积累,传统检测方法遇到效率和准确率瓶颈,为此,提出了基于改进Faster RCNN的缺陷识别算法,算法通过模型中RPN网络卷积核的优化,减少RPN网络的... 红外图像特征对具有发热特征的电力特设缺陷具有较好的表达能力,随着电力企业设备红外图像的积累,传统检测方法遇到效率和准确率瓶颈,为此,提出了基于改进Faster RCNN的缺陷识别算法,算法通过模型中RPN网络卷积核的优化,减少RPN网络的计算量,通过多分辨率特征融合提高网络对缺陷特征语义信息和细节定位信息的应用,最后通过自适应训练数据抽样提高正负训练样本抽取的有效性,从而提高算法缺陷识别准确率。实测数据实验表明,改进模型的目标函数可以在较少的迭代次数下实现稳定实收,在准确率、召回率和运行时间等评价指标上优于传统Faster RCNN模型、SIFT算子模型等已有模型,从而验证了算法的有效性和对不同背景干扰的有效性。 展开更多
关键词 电力设备缺陷识别 深度学习网络 改进Faster RCNN模型 多分辨率特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部