针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition,AMRSVD)的大地电磁数据处理方法.首先对大地电磁数...针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition,AMRSVD)的大地电磁数据处理方法.首先对大地电磁数据构建Hankel矩阵,利用MRSVD得到不同分辨率的近似信号和细节信号;然后选用近似信号和细节信号的标准差差值,对大地电磁数据进行信噪辨识;接着结合MRSVD和相邻细节信号的标准差差值,提出先验信息未知情况下的AMRSVD法;最后对辨识出的强干扰运用AMRSVD去除噪声,重构有用信号.实验结果表明,该方法的处理效率高,能有效分离出相关性较强的噪声,时间序列和视电阻率-相位曲线均得到有效改善.展开更多
针对配电网行波定位中受噪声干扰导致波头标定困难和传统定位方法不适用于多分支配网结构的问题,提出基于多分辨率奇异值分解-变分模态分解MRSVD-VMD(multi-resolution singular value decomposition-variational mode decomposition)...针对配电网行波定位中受噪声干扰导致波头标定困难和传统定位方法不适用于多分支配网结构的问题,提出基于多分辨率奇异值分解-变分模态分解MRSVD-VMD(multi-resolution singular value decomposition-variational mode decomposition)的自适应波头标定算法和不受行波波速影响的T域定位算法。利用MRSVD和VMD分解故障行波,根据峭度值和峭熵比筛选有效分量,然后通过对称差分能量算子SDEO(symmetrical differencing energy operator)实现波头标定;最后利用行波到达时间筛选故障T域,实现故障点的区段定位和精确测距。仿真结果表明,MRSVD-VMD行波波头标定方法在不同噪声下能有效标定波头,T域定位算法排除波速影响,能实现多分支配电网故障的精确定位。展开更多
文摘针对强电磁干扰极易掩盖微弱的大地电磁有用信号,本文结合奇异值分解在去噪方面的优越性,提出基于自适应多分辨率奇异值分解(Adaptive Multi-Resolution Singular Value Decomposition,AMRSVD)的大地电磁数据处理方法.首先对大地电磁数据构建Hankel矩阵,利用MRSVD得到不同分辨率的近似信号和细节信号;然后选用近似信号和细节信号的标准差差值,对大地电磁数据进行信噪辨识;接着结合MRSVD和相邻细节信号的标准差差值,提出先验信息未知情况下的AMRSVD法;最后对辨识出的强干扰运用AMRSVD去除噪声,重构有用信号.实验结果表明,该方法的处理效率高,能有效分离出相关性较强的噪声,时间序列和视电阻率-相位曲线均得到有效改善.
文摘针对配电网行波定位中受噪声干扰导致波头标定困难和传统定位方法不适用于多分支配网结构的问题,提出基于多分辨率奇异值分解-变分模态分解MRSVD-VMD(multi-resolution singular value decomposition-variational mode decomposition)的自适应波头标定算法和不受行波波速影响的T域定位算法。利用MRSVD和VMD分解故障行波,根据峭度值和峭熵比筛选有效分量,然后通过对称差分能量算子SDEO(symmetrical differencing energy operator)实现波头标定;最后利用行波到达时间筛选故障T域,实现故障点的区段定位和精确测距。仿真结果表明,MRSVD-VMD行波波头标定方法在不同噪声下能有效标定波头,T域定位算法排除波速影响,能实现多分支配电网故障的精确定位。