期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于多分类自适应聚焦损失与B-CNN的棉田昆虫细粒度图像分类研究 被引量:1
1
作者 郝月华 吕卫东 +1 位作者 张幽迪 冯俊磊 《现代电子技术》 北大核心 2025年第5期43-48,共6页
针对复杂背景下棉田昆虫细粒度图像分类问题,提出一种基于多分类自适应聚焦损失函数与双线性卷积神经网络(B-CNN)的研究方法。为更有效地提取图像特征,选取B-CNN作为主干网络,预训练的Inception V3作为特征提取网络,并加入了注意力机制C... 针对复杂背景下棉田昆虫细粒度图像分类问题,提出一种基于多分类自适应聚焦损失函数与双线性卷积神经网络(B-CNN)的研究方法。为更有效地提取图像特征,选取B-CNN作为主干网络,预训练的Inception V3作为特征提取网络,并加入了注意力机制CBAM模块。针对图像数据集类别不平衡的问题,设计了一种多分类自适应聚焦损失函数,提高模型对少数类别的识别能力。此外,在模型训练过程中加入L2正则化解决模型过拟合问题,使用Reduce LROn Plateau学习率调度器帮助模型达到最优解。实验结果显示,文中模型在验证集上的准确率达到97.52%,在测试集上的准确率达到97.14%,同时损失值、F1分数等评价指标也均优于其他对比模型。该研究不仅为棉田昆虫的图像分类提供了一种有效的技术手段,也为其他领域的细粒度图像分类问题提供了有益的参考。 展开更多
关键词 棉田昆虫 B-CNN 多分类自适应聚焦损失 InceptionV3 CBAM 细粒度图像分类
在线阅读 下载PDF
自适应前景聚焦无人机航拍图像目标检测
2
作者 肖振久 吴正伟 +1 位作者 张杰浩 曲海成 《光电工程》 CAS CSCD 北大核心 2024年第9期99-112,共14页
针对无人机航拍图像前景目标尺度差异大、样本空间分布不均衡、背景冗余占比高所导致的漏检和误检问题,本文提出一种自适应前景聚焦无人机航拍图像目标检测算法。首先,构建全景特征细化分类层,通过重参数空间像素方差法及混洗操作,增强... 针对无人机航拍图像前景目标尺度差异大、样本空间分布不均衡、背景冗余占比高所导致的漏检和误检问题,本文提出一种自适应前景聚焦无人机航拍图像目标检测算法。首先,构建全景特征细化分类层,通过重参数空间像素方差法及混洗操作,增强算法聚焦能力,提高前景样本特征的表示质量。其次,采用分离-学习-融合策略设计自适应双维特征采样单元,加强对前景焦点特征提取能力和背景细节信息保留能力,改善误检情况,加快推理速度。然后,结合多分支结构和广播自注意力机制构造多路径信息整合模块,解决下采样引起的歧义映射问题,优化特征的交互与整合,提高算法对多尺度目标的识别、定位能力,降低模型计算量。最终,引入自适应前景聚焦检测头,运用动态聚焦机制,增强前景目标检测精度,抑制背景干扰。在公开数据集Vis Drone2019和Vis Drone2021上进行相关实验,实验结果表明,该方法m AP@0.5数值达到了45.1%和43.1%,较基线模型分别提升6.6%和5.7%,且优于其他对比算法,表明该算法显著提升了检测精度,具备良好的普适性与实时性。 展开更多
关键词 无人机航拍图像 全景特征细化分类 自适应双维特征采样 多路径信息整合 多尺度目标 动态聚焦
在线阅读 下载PDF
自适应聚焦损失的图像目标检测算法 被引量:4
3
作者 肖振久 孔祥旭 +1 位作者 宗佳旭 杨玥莹 《计算机工程与应用》 CSCD 北大核心 2021年第23期185-192,共8页
现代目标检测算法仍然存在由现有目标检测架构引起的正负样本不平衡和训练数据引起的难易样本不平衡。现有方法一般采用基于类别频率的重采样或基于类别预测概率的重新加权,虽然减轻了类别的不平衡问题,但是引入了新的超参数,为每个训... 现代目标检测算法仍然存在由现有目标检测架构引起的正负样本不平衡和训练数据引起的难易样本不平衡。现有方法一般采用基于类别频率的重采样或基于类别预测概率的重新加权,虽然减轻了类别的不平衡问题,但是引入了新的超参数,为每个训练任务需要进行大量的手动调整超参数。为此在现有Focal Loss损失函数基础上提出了一个新的损失函数自适应聚焦损失(Adaptive Focal Loss),使模型聚焦于对训练过程贡献更大的困难样本,并且可自适应地调整超参数。根据训练过程中每批图像标签中的正负样本数量计算出自适应的加权因子来实现对正负样本的动态平衡。根据训练过程中不同阶段各类真实标签的期望概率计算出自适应的调制因子来自适应地平衡难易样本。为验证方法的有效性,在PASCAL VOC2007测试数据集中平均精度均值达到80.75%,相比较于原算法提高了3.45个百分点。在PASCAL VOC2012测试数据集中平均精度均值达到77.17%,相比较于原算法提高了1.87个百分点。实验结果表明,把Adaptive Focal Loss作为网络的损失函数,相比于原始的Focal Loss损失函数检测精度有所提升,并具有较大的实用价值。 展开更多
关键词 目标检测 样本不平衡 自适应聚焦损失
在线阅读 下载PDF
基于自适应聚焦CRIoU损失的目标检测算法 被引量:1
4
作者 肖振久 赵昊泽 +5 位作者 张莉莉 夏羽 郭杰龙 俞辉 李成龙 王俐文 《液晶与显示》 CAS CSCD 北大核心 2023年第11期1468-1480,共13页
在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的... 在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的情况。并且在回归任务中也存在样本不均衡的情况,大量的低质量样本影响了损失收敛。为了提高检测精度和回归收敛速度提出了一种新的边界框回归损失函数。首先确定设计思想并设计IoU系列损失函数的范式;其次在IoU损失的基础上引入两中心点形成矩形的周长和两框形成的最小闭包矩形周长的比值作为边界框中心点距离惩罚项,并且将改进的IoU损失应用到非极大值抑制(Non-Maximum Suppression,NMS)处理中。接着引入两框的宽高误差和最小外包框的宽高平方作为宽高惩罚项,确定CRIoU(Complete Relativity IoU,CRIoU)损失函数。最后在CRIoU的基础上加入自适应加权因子,对高质量样本的回归损失加权,定义了自适应聚焦CRIoU(Adaptive focal CRIoU,AF-CRIoU)。实验结果表明,使用AF-CRIoU损失函数对比传统非IoU系列损失的检测精度最高相对提升了8.52%,对比CIoU系列损失的检测精度最高相对提升了2.69%,使用A-CRIoU-NMS(Around CRIoU NMS)方法对比原NMS方法的检测精度提升0.14%。将AF-CRIoU损失应用到安全帽检测中,也达到了很好的检测效果。 展开更多
关键词 目标检测 边界框回归 IoU损失函数 非极大值抑制 自适应聚焦损失
在线阅读 下载PDF
基于加权分类损失和核范数的领域自适应模型 被引量:1
5
作者 杜社林 黄炳赫 +2 位作者 李荣鹏 宋学力 肖玉柱 《计算机应用研究》 CSCD 北大核心 2023年第6期1734-1738,共5页
领域自适应将源域上学习到的知识迁移到目标域上,使得在带标签数据少的情况下也可以有效地训练模型。采用伪标签的领域自适应模型未考虑错误伪标签的影响,并且在决策边界处样本的分类准确率较低,针对上述问题提出了基于加权分类损失和... 领域自适应将源域上学习到的知识迁移到目标域上,使得在带标签数据少的情况下也可以有效地训练模型。采用伪标签的领域自适应模型未考虑错误伪标签的影响,并且在决策边界处样本的分类准确率较低,针对上述问题提出了基于加权分类损失和核范数的领域自适应模型。该模型使用带有伪标签的可信样本特征与带有真实标签的源域样本特征构建辅助域,在辅助域上设计加权分类损失函数,降低错误伪标签在训练过程中产生的影响;加入批量核范数最大化损失,提高决策边界处样本的分类准确率。在Office31、Office-Home、Image-CLEFDA基准数据集上与之前模型的对比实验表明,该模型有更高的精确度。 展开更多
关键词 领域自适应 加权分类损失 核范数 伪标签
在线阅读 下载PDF
基于阶段聚焦损失和并行增广策略的遥感图像场景分类 被引量:9
6
作者 陈燕 杨艳 +2 位作者 杨春兰 邓运生 李壮 《电子测量与仪器学报》 CSCD 北大核心 2023年第1期116-122,共7页
随着深度学习的不断普及,卷积神经网络已成为遥感图像场景分类的主要手段,然而当前的研究主要集中于多网络主干的信息融合以及注意力机制等领域,在提高分类精度的同时也带来更高的计算复杂度。针对上述问题,分别从改进卷积神经网络损失... 随着深度学习的不断普及,卷积神经网络已成为遥感图像场景分类的主要手段,然而当前的研究主要集中于多网络主干的信息融合以及注意力机制等领域,在提高分类精度的同时也带来更高的计算复杂度。针对上述问题,分别从改进卷积神经网络损失函数和设计新的样本训练策略两个角度出发,在不增加计算复杂度的前提下,提升卷积神经网络的分类性能。首先,在对传统交叉熵和Focal loss损失函数进行分析的基础上,提出一种阶段聚焦损失函数,该损失函数可以在训练阶段对卷积网络进行有侧重的性能挖掘。其次,设计了一种并行样本训练策略,将采用Gridmask算法增广后的样本图像和原始样本图像,分为两路输入卷积网络进行并行训练,进一步提升卷积网络的分类性能。实验结果表明,所提出的算法分别在AID和NWPU-RESISC45两个大规模数据库上取得了96.72%和93.95%的检测精度,可以显著提升遥感图像场景分类的性能。 展开更多
关键词 遥感图像场景分类 阶段聚焦损失 并行Gridmask样本增广
在线阅读 下载PDF
一种自适应的大间隔近邻分类算法 被引量:15
7
作者 杨柳 于剑 景丽萍 《计算机研究与发展》 EI CSCD 北大核心 2013年第11期2269-2277,共9页
kNN分类算法虽然已经广泛地应用于模式识别的各个领域,但是如何对kNN进行改进仍然是一个研究热点.在各种改进方法中,大间隔近邻分类方法取得了较好的改进效果,但是该算法仍然有一些缺点,例如算法对所有测试样本选择的邻域大小(即k值)都... kNN分类算法虽然已经广泛地应用于模式识别的各个领域,但是如何对kNN进行改进仍然是一个研究热点.在各种改进方法中,大间隔近邻分类方法取得了较好的改进效果,但是该算法仍然有一些缺点,例如算法对所有测试样本选择的邻域大小(即k值)都是一样的.针对这一缺点,提出了将自适应选择k值引入到目标函数设定中的自适应大间隔近邻分类算法(ALMNN).该算法的主要步骤是:首先为每个测试样本计算一个k值,然后在每一类选取k个目标近邻,计算属于每一类的损失函数值,选择拥有最小函数值的类作为测试样本的类别.给出了ALMNN方法的算法描述,并且通过多个数据集的实验表明,提出的算法与传统的kNN,LMNN比较,可以在一定程度上提高分类的性能,减少了k值的选择对分类性能的影响,训练集的随机抽取对算法的分类性能影响较小. 展开更多
关键词 自适应k值 马氏距离 大间隔近邻分类 强度函数 损失函数
在线阅读 下载PDF
MAFDNet:复杂环境下图像自适应分类新方法 被引量:1
8
作者 叶继华 黎欣 +3 位作者 陈进 江爱文 化志章 万文涛 《数据采集与处理》 CSCD 北大核心 2023年第6期1392-1405,共14页
复杂环境下,往往困难样本和简单样本并存,现有分类方法主要针对困难样本进行设计,所构建网络用于分类简单样本时会造成计算资源的浪费;而网络修剪和权重量化等方法则不能同时兼顾模型的准确度和存储开销。为提升计算资源的使用效率并有... 复杂环境下,往往困难样本和简单样本并存,现有分类方法主要针对困难样本进行设计,所构建网络用于分类简单样本时会造成计算资源的浪费;而网络修剪和权重量化等方法则不能同时兼顾模型的准确度和存储开销。为提升计算资源的使用效率并有更好的准确率,本文着眼于输入样本的空间冗余,提出了复杂环境下图像自适应分类网络MAFDNet,并引入置信度作为分类准确性的判断,同时提出了由内容损失、融合损失和分类损失组成的自适应损失函数。MAFDNet由3个子网组成,输入图像首先被送入到低分辨率子网中,该子网有效提取了低分辨率的特征,具有高置信度的样本先被识别并从网络中提前退出,低置信度的样本则需要依次进入更高分辨率的子网中,而网络中的高分辨率子网具有识别困难样本的能力。MAFDNet将分辨率自适应和深度自适应结合在一起,通过实验表明,在相同计算资源条件下,MAFDNet在CIFAR?10、CIFAR?100和ImageNet这3个复杂环境数据集上的top?1准确率均得到提升。 展开更多
关键词 MAFDNet 复杂环境 自适应分类 自适应损失 置信度
在线阅读 下载PDF
基于双交叉熵的自适应残差卷积图像分类算法 被引量:5
9
作者 李伟 黄鹤鸣 《计算机工程与设计》 北大核心 2023年第12期3670-3676,共7页
为弥补卷积神经网络在图像分类方面对颜色特征的不敏感,并生成更逼真的图像样本,提出一种基于双交叉熵的自适应残差卷积图像分类算法。将双交叉熵损失函数应用到深度卷积生成对抗网络中的判别模型;结合图像的主颜色特征和残差卷积神经... 为弥补卷积神经网络在图像分类方面对颜色特征的不敏感,并生成更逼真的图像样本,提出一种基于双交叉熵的自适应残差卷积图像分类算法。将双交叉熵损失函数应用到深度卷积生成对抗网络中的判别模型;结合图像的主颜色特征和残差卷积神经网络提取的空间位置特征,运用改进的差分演化算法解决多特征融合权重系数的设定问题。实验结果表明,所提算法与传统的CNN算法相比,准确率明显提高10.75个百分点。双交叉熵损失函数可以提高判别模型区分生成图像与真实图像的能力,迫使生成模型生成更逼真的图像样本。 展开更多
关键词 双交叉熵损失 生成对抗网络 卷积神经网络 多特征融合 自适应权重 改进的差分演化算法 图像分类
在线阅读 下载PDF
一种基于两因素相结合的自适应学习三支决策阈值的算法
10
作者 朱艳辉 田海龙 +1 位作者 张永平 朱道杰 《小型微型计算机系统》 CSCD 北大核心 2016年第6期1303-1307,共5页
针对三支决策自动学习阈值问题,综合考虑决策风险总损失和分类器的综合性能两因素,提出一种基于层次分析法的分类器性能综合评价模型,结合决策风险损失建立了自动学习三支决策最优化阈值模型,进而提出一种基于风险损失与评价性能两因素... 针对三支决策自动学习阈值问题,综合考虑决策风险总损失和分类器的综合性能两因素,提出一种基于层次分析法的分类器性能综合评价模型,结合决策风险损失建立了自动学习三支决策最优化阈值模型,进而提出一种基于风险损失与评价性能两因素相结合的三支决策自适应阈值算法,实验表明,提出的算法能学习到有效的三支决策阈值,并可以灵活设置权重参数和倍率参数等相关参数,权衡决策风险损失和分类器的综合性能,使决策者在允许的决策风险损失下有效的提高分类器的综合性能. 展开更多
关键词 风险损失 分类器性能 三支决策 自适应算法 阈值
在线阅读 下载PDF
基于边界辅助判别的滚动轴承故障特征增强及诊断方法 被引量:1
11
作者 李佰霖 鲁大臣 +1 位作者 付文龙 陈禹朋 《机电工程》 CAS 北大核心 2024年第4期643-650,共8页
滚动轴承作为机械设备重要部件,对保障设备安全稳定运行具有重要意义。针对实际诊断中的滚动轴承故障数据不平衡问题,提出了一种基于边界辅助判别的辅助分类生成对抗网络模型(BD-ACGAN)。首先,设计了一种可用于提取故障样本边界细节特... 滚动轴承作为机械设备重要部件,对保障设备安全稳定运行具有重要意义。针对实际诊断中的滚动轴承故障数据不平衡问题,提出了一种基于边界辅助判别的辅助分类生成对抗网络模型(BD-ACGAN)。首先,设计了一种可用于提取故障样本边界细节特征的边界辅助判别器,以引导生成器生成更真实的样本,并采用该生成样本解决了数据不平衡的问题;其次,采用了自适应权重损失模块,动态调整了损失权重,使该模型更加关注重要的特征信息,从而提高了该模型的生成质量和特征表达能力;利用生成样本和真实样本数据对BD-ACGAN模型进行了增强训练,提高了该模型的泛化能力和诊断能力;最后,进行了消融实验及对照实验,对BD-ACGAN模型的特征增强能力和诊断效果进行了验证,分别采用美国凯斯西储大学和西安交通大学滚动轴承数据集对模型进行了实验验证。研究结果表明:该BD-ACGAN模型能够有效利用故障样本的边界特征解决数据不平衡问题,并且故障诊断精确度为98.79%,优于其他对照模型,为滚动轴承故障诊断提供了一种新的方法。 展开更多
关键词 轴承故障诊断 数据不平衡 边界辅助判别的辅助分类生成对抗网络 故障特征增强 自适应权重损失 数据集增广
在线阅读 下载PDF
一种图像增强及改进海洋生物图像检测算法 被引量:4
12
作者 郭平秀 李启南 杨忠鹏 《计算机工程与应用》 CSCD 北大核心 2023年第8期208-216,共9页
为提高海洋生物图像的检测精度,采用优化的MSRCR对海洋生物图像进行增强,并基于ASFF和Focal Loss提出一种改进的YOLOv4算法(IYOLOv4)。针对光线在海水中传播,红光的强衰减性,导致海洋生物图像对比度低、出现色偏的问题,使用双边滤波代... 为提高海洋生物图像的检测精度,采用优化的MSRCR对海洋生物图像进行增强,并基于ASFF和Focal Loss提出一种改进的YOLOv4算法(IYOLOv4)。针对光线在海水中传播,红光的强衰减性,导致海洋生物图像对比度低、出现色偏的问题,使用双边滤波代替传统的MSRCR中的高斯滤波,不仅能保留更多图像边界的特征,而且通过增益图像中的红色,解决了图像色偏问题,同时也提高了图像局域对比度。算法使用ASFF结构充分利用图像高层特征的语义信息与底层的细粒度特征,通过学习权重参数的方式来进行特征的充分融合,增强融合效果;将YOLOv4的分类损失中采用的BCE Loss替换为Focal Loss,来解决数据集中类别不均衡的问题,提高检测精度。实验结果表明,该算法与YOLOv4算法相比,海参、扇贝、海星、海胆四种类别的AP分别提高了10.35、9.13、2.22、0.14个百分点,mAP提高了5.45个百分点。 展开更多
关键词 图像检测 YOLOv4 双边滤波 自适应空间特征融合(ASFF) 分类损失
在线阅读 下载PDF
基于局部特征融合的细粒度车辆识别 被引量:3
13
作者 张晶晶 雷景生 《计算机工程与设计》 北大核心 2022年第4期1173-1178,共6页
为有效提高基于局部检测的细粒度图像分类方法的工作效率,提出一个自适应通道分配模块,能主动分组表达相同语义信息的特征通道。此过程的学习由设计的判别性和多样性损失函数监督完成,利用多尺度深度可分离卷积,从已提取的全局图像特征... 为有效提高基于局部检测的细粒度图像分类方法的工作效率,提出一个自适应通道分配模块,能主动分组表达相同语义信息的特征通道。此过程的学习由设计的判别性和多样性损失函数监督完成,利用多尺度深度可分离卷积,从已提取的全局图像特征中检测有助于分类的多样化局部信息。通过训练的网络具有强大的特征分配能力,在全局对象定位的基础上进一步实现对细节的定位。图像的融合表示综合考虑各个部分对分类的贡献,有效分类细粒度车型,在公开的Stanford Cars和CompCars数据集上的对比实验结果验证了该方法表现良好。 展开更多
关键词 细粒度图像分类 自适应通道分配 损失函数 多尺度深度可分离卷积 局部检测 融合表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部