期刊文献+
共找到518篇文章
< 1 2 26 >
每页显示 20 50 100
基于天牛须优化算法的相关向量机边坡稳定性分析 被引量:2
1
作者 张研 唐北昌 孟庆鹏 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期11-17,36,共8页
为了快速、准确地预测边坡稳定性,及时控制边坡危害,提出了一种基于天牛须(beetle antennae search,BAS)优化算法的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。基于RVM模型,建立了边坡影响因素与稳定性的非线性映射... 为了快速、准确地预测边坡稳定性,及时控制边坡危害,提出了一种基于天牛须(beetle antennae search,BAS)优化算法的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。基于RVM模型,建立了边坡影响因素与稳定性的非线性映射关系;采用BAS算法对RVM模型参数进行优化,提出了基于BAS算法的RVM边坡稳定性分析优化模型;并将该模型应用于京新高速公路的边坡稳定性分析。分析结果表明:与实际值相比,基于BAS-RVM模型的最大绝对值相对误差为3.90%;在相同学习样本下,与RVM模型、支持向量机(support vector machine,SVM)模型和径向基函数(radical basis function,RBF)模型的预测值相比,BAS-RVM模型预测结果的可信度和拟合度更好、精度更高,其平均绝对值误差(mean absolute error,EMA)、均方根误差(root mean square error,ERMS)、相对均方误差(relative root mean square error,ERRMS)远低于其他3种模型。 展开更多
关键词 岩土工程 天牛须优化算法(BAS) 相关向量(RVM) 预测模型 边坡
在线阅读 下载PDF
基于遗传和引导聚集算法优化支持向量机的白酒基酒品质评估方法
2
作者 庞婷婷 张贵宇 +4 位作者 刘科材 李晓平 庹先国 彭英杰 曾祥林 《食品科学》 北大核心 2025年第6期275-284,共10页
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support v... 基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。 展开更多
关键词 基酒 支持向量 引导聚集算法 遗传算法 分类预测
在线阅读 下载PDF
基于改进多分类算法和相关向量机的电力变压器故障诊断方法 被引量:18
3
作者 吴坤 康建设 池阔 《高电压技术》 EI CAS CSCD 北大核心 2016年第9期3011-3017,共7页
针对电力变压器故障诊断问题实际特点和支持向量机方法的条件限制,提出一种基于改进多分类算法和相关向量机的智能故障诊断方法。该方法综合标准一对一和一对余多分类算法的结构特点,改进现有一对一算法的最大投票策略,提出一种全新的... 针对电力变压器故障诊断问题实际特点和支持向量机方法的条件限制,提出一种基于改进多分类算法和相关向量机的智能故障诊断方法。该方法综合标准一对一和一对余多分类算法的结构特点,改进现有一对一算法的最大投票策略,提出一种全新的两层最大投票策略,并在此基础上将k类多分类问题转化为k(k-1)/2个三分类子问题,最终设计出一种一对一对余的改进多分类算法;同时在三分类子问题上,采用综合性能较支持向量机更为优异的相关向量机作为二类分类器,并基于一对一算法完成三分类,进而实现k类多分类。电力变压器故障诊断实例结果和理论分析表明,该智能故障诊断方法具有以下明显优势:可有效提升诊断正确率5%以上,可剔除绝大部分无效投票从而优化投票结果,可显著增强样本诊断可信度水平,可提高识别未知故障类型精度20%以上,并具有诊断多重故障类型性能。 展开更多
关键词 故障诊断 相关向量 一对一 一对余 多分类 电力变压器
在线阅读 下载PDF
基于粒子群-支持向量机算法的激光诱导击穿光谱钢铁快速检测与分类 被引量:3
4
作者 曾庆栋 陈光辉 +8 位作者 李文鑫 孟久灵 李耿 童巨红 田志辉 张晓林 李国辉 郭连波 肖永军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1559-1565,共7页
钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意... 钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意义。利用激光诱导击穿光谱技术(LIBS)进行10种钢铁样品光谱数据的快速采集,并采用支持向量机(SVM)算法对其数据进行学习建模,得到钢铁快速分类模型。然而,由于不同钢铁样品的光谱数据特征是复杂且相似的,导致设置的模型参数也会对SVM模型的分类结果有着较大的影响。为了实现对不同牌号钢铁合金的快速检测分类,实验中采用粒子群算法(PSO)与网格寻优法两种不同方法来优化模型参数,并分别选取样品中6种微量元素(Mn、Cr、Cu、V、Mo、Ti)的17条特征谱线,和经主成分分析法(PCA)对全谱数据降维提取得到的前17个主成分作为模型的输入,建立PSO-SVM、PSO-PCA-SVM、PCA-SVM和SVM四种分类模型。实验结果表明,相比于精度最高的PCA-SVM模型的优化时间(257.84 s),PSO-SVM模型优化时间最短(11.5 s),且识别精度可达96.67%,与PCA-SVM模型的精度(97.5%)几乎相当。该结果表明LIBS结合PSO-SVM算法可实现快速的钢铁检测与分类,该方法为钢铁产品的快速检测与分类提供了一种新的解决途径。 展开更多
关键词 激光诱导击穿光谱 支持向量 粒子群算法 钢铁分类
在线阅读 下载PDF
基于遗传算法优化支持向量机的船舰目标识别分类 被引量:1
5
作者 杨永平 《舰船科学技术》 北大核心 2024年第4期174-178,共5页
为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算... 为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算法,优化支持向量机的惩罚因子与核参数;在参数优化后的支持向量机内,输入舰船目标特征矩样本,输出舰船目标识别分类结果。实验证明,该方法可有效提取舰船目标特征矩;经过参数优化后的支持向量机,可有效降低计算复杂度,加快检测目标识别分类效率,具备较优的舰船目标识别分类性能。该方法均可精准识别分类舰船目标。 展开更多
关键词 遗传算法 支持向量 舰船目标 识别分类 HU矩 特征描述子
在线阅读 下载PDF
基于多分类相关向量机的水电机组振动故障诊断 被引量:29
6
作者 易辉 梅磊 +2 位作者 李丽娟 刘宇芳 袁宇浩 《中国电机工程学报》 EI CSCD 北大核心 2014年第17期2843-2850,共8页
水电机组振动故障成因与故障征兆之间呈复杂的非线性关系,传统方法难以描述。当前研究常采用模式识别方法,如支持向量机、神经网络等实现振动故障诊断。该文在现有研究基础上,引进相关向量机(relevance vector machine,RVM)对诊断过程... 水电机组振动故障成因与故障征兆之间呈复杂的非线性关系,传统方法难以描述。当前研究常采用模式识别方法,如支持向量机、神经网络等实现振动故障诊断。该文在现有研究基础上,引进相关向量机(relevance vector machine,RVM)对诊断过程进行改进。相比传统方法,该文所提方法在学习过程中参数设置简单,在输出结果时给出了分类的可靠性,适合实际工程应用。同时,该方法在决策过程中,能够根据训练数据分布情况,自动选取决策结构,进一步提高诊断的速度与准确性。将该文所提诊断方法用于水电机组振动故障诊断实例,取得良好效果,验证了算法的有效性。 展开更多
关键词 相关向量 水电 振动 故障诊断 多分类 决策导向图
在线阅读 下载PDF
基于多分类相关向量机的变压器故障诊断新方法 被引量:39
7
作者 尹金良 朱永利 俞国勤 《电力系统保护与控制》 EI CSCD 北大核心 2013年第5期77-82,共6页
变压器故障诊断本质为多分类问题,具有故障样本数据少,故障不确定因素多的特点。现有变压器故障诊断方法中,贝叶斯网络(BN)需要大量样本数据且计算量大,支持向量机(SVM)存在规则化系数确定困难的局限。针对此现状,提出基于多分类相关向... 变压器故障诊断本质为多分类问题,具有故障样本数据少,故障不确定因素多的特点。现有变压器故障诊断方法中,贝叶斯网络(BN)需要大量样本数据且计算量大,支持向量机(SVM)存在规则化系数确定困难的局限。针对此现状,提出基于多分类相关向量机(M-RVM)的变压器故障诊断新方法。该方法以变压器溶解气体含量比值作为M-RVM模型的输入,采用快速type-Ⅱ最大似然(Fast Type-ⅡML)和最大期望估计(EM)的方法进行模型推断,诊断输出为各故障类别的概率,以概率最大的故障类别作为诊断结果。实例分析表明该方法诊断速度较快,能满足工程需要,同基于BN和SVM的变压器故障诊断方法相比,具有较高的诊断正确率。 展开更多
关键词 多分类 相关向量 贝叶斯网络 支持向量 变压器故障诊断
在线阅读 下载PDF
遗传算法优化的支持向量机湿地遥感分类——以洪河国家级自然保护区为例 被引量:40
8
作者 臧淑英 张策 +1 位作者 张丽娟 张玉红 《地理科学》 CSCD 北大核心 2012年第4期434-441,共8页
湿地遥感分类作为湿地管理、监测与评价的重要手段,受到了广泛的关注。遗传算法(GA)借鉴了生物进化规律进行启发式搜索寻优,支持向量机(SVM)是一种新型的空间数据挖掘方法,二者相结合可以发挥各自的优势,寻找到支持向量机的全局最优参数... 湿地遥感分类作为湿地管理、监测与评价的重要手段,受到了广泛的关注。遗传算法(GA)借鉴了生物进化规律进行启发式搜索寻优,支持向量机(SVM)是一种新型的空间数据挖掘方法,二者相结合可以发挥各自的优势,寻找到支持向量机的全局最优参数,从而较准确地对湿地进行遥感分类。以洪河自然保护区为例,采用遗传算法优化的支持向量机方法进行了湿地遥感分类研究。同格网搜索下的支持向量机湿地遥感分类及最大似然监督分类对比,结果表明,遗传算法优化较格网搜索方式总精度提高了7.29%,较最大似然监督分类提高了12.06%,方法改善了沼泽、草地与裸地三种地物间的区分,是湿地遥感分类的有效手段。 展开更多
关键词 湿地 遥感分类 遗传算法 支持向量 洪河自然保护区
在线阅读 下载PDF
采用提升小波包和相关向量机的电能质量扰动分类 被引量:14
9
作者 刘慧 刘国海 沈跃 《高电压技术》 EI CAS CSCD 北大核心 2010年第3期782-788,共7页
针对电能质量扰动识别问题,提出一种多级相关向量机(RVM)和提升小波包分解(LWP)相结合的扰动分类新方法。根据电能扰动现象的内在特征,首先通过提升小波包算法快速提取各类扰动信号的分解系数能量作为扰动特征量;然后利用相关向量机构... 针对电能质量扰动识别问题,提出一种多级相关向量机(RVM)和提升小波包分解(LWP)相结合的扰动分类新方法。根据电能扰动现象的内在特征,首先通过提升小波包算法快速提取各类扰动信号的分解系数能量作为扰动特征量;然后利用相关向量机构建多级分类树模型实现分类识别任务。研究表明相关向量机在权系数上引入超参数,与支持向量机相比无需设置惩罚系数、推广能力好、解更稀疏。仿真表明所采用方法能够快速有效地获取高精度扰动分类识别率,测试时间短,更适合于在线检测。仿真和试验结果验证了所采用方法对电能质量扰动分类的有效性。 展开更多
关键词 电能质量 扰动分类 相关向量 支持向量 小波包分解 提升算法
在线阅读 下载PDF
多核多分类相关向量机在变压器局部放电模式识别中的应用 被引量:25
10
作者 尚海昆 苑津莎 +1 位作者 王瑜 张利伟 《电工技术学报》 EI CSCD 北大核心 2014年第11期221-228,共8页
针对传统单核分类器存在的固有二分类属性及识别信息不够完整的问题,首次提出了一种基于多核多分类相关向量机(MMRVM)的变压器局部放电模式识别新方法。首先选用不同的核函数对4种变压器局部放电信号特征进行映射,解决了不同数据源的问... 针对传统单核分类器存在的固有二分类属性及识别信息不够完整的问题,首次提出了一种基于多核多分类相关向量机(MMRVM)的变压器局部放电模式识别新方法。首先选用不同的核函数对4种变压器局部放电信号特征进行映射,解决了不同数据源的问题;然后利用粒子群优化算法对核参数进行优化选择,有效避免了核参数选择的主观性;最后利用构建出的MMRVM分类模型直接进行多分类,实现放电模式识别。文中以实验室4种典型缺陷的变压器局部放电信号为研究对象,采用传统单核SVM分类器、单核RVM分类器与MMRVM分类器对其进行分析对比。结果表明,MMRVM分类器融合了多种放电特征信息,能够较为全面的描述放电特征,与单核分类器相比具有更高的诊断准确率和更好的实用性。 展开更多
关键词 多核 多分类 相关向量 变压器 局部放电 模式识别
在线阅读 下载PDF
基于主成分分析和多分类相关向量机的GIS局部放电模式识别 被引量:65
11
作者 律方成 金虎 +1 位作者 王子建 张波 《电工技术学报》 EI CSCD 北大核心 2015年第6期225-231,共7页
GIS局部放电模式识别是其状态评估的重要部分,搭建了252k VGIS局部放电超高频检测仿真实验平台,模拟了4种典型的GIS局部放电模型,并通过试验建立了相应的超高频信号图谱数据库,然后根据信号特点提取了26个原始特征量;采用主成分分析法... GIS局部放电模式识别是其状态评估的重要部分,搭建了252k VGIS局部放电超高频检测仿真实验平台,模拟了4种典型的GIS局部放电模型,并通过试验建立了相应的超高频信号图谱数据库,然后根据信号特点提取了26个原始特征量;采用主成分分析法对特征空间进行降维处理,最终得到10个新的特征量,将原始特征量和降维后的特征量分别输入到多分类相关向量机(M-RVM)中进行分析,结果表明,以降维后的特征量作为输入量,其识别率要高于降维前的;并且采用BN、SVM和M-RVM三种分类器进行对比分析,结果表明,无论是采用原始特征参量还是降维后的参量作为输入量,M-RVM方法的识别率都是最高,其中降维后的识别率大于85%。 展开更多
关键词 气体绝缘组合电器 局部放电 主成分分析 多分类相关向量 模式识别
在线阅读 下载PDF
基于支持向量机的渐进直推式分类学习算法 被引量:88
12
作者 陈毅松 汪国平 董士海 《软件学报》 EI CSCD 北大核心 2003年第3期451-460,共10页
支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未... 支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未知样本建立一套进行识别的方法和准则.较之传统的归纳式学习方法而言,直推式学习往往更具普遍性和实际意义.提出了一种基于支持向量机的渐进直推式分类学习算法,在少量有标签样本和大量无标签样本所构成的混合样本训练集上取得了良好的学习效果. 展开更多
关键词 支持向量 渐进直推式分类学习算法 器学习 统计学习理论
在线阅读 下载PDF
基于相关向量机的机械LiDAR点云数据分类 被引量:10
13
作者 刘志青 李鹏程 +4 位作者 郭海涛 张保明 陈小卫 丁磊 赵传 《红外与激光工程》 EI CSCD 北大核心 2016年第B05期98-104,共7页
针对支持向量机应用于机载LiDAR点云数据分类时存在的模型稀疏性弱、预测结果缺乏概率意义、核函数必须满足Mercer定理等缺点,提出了一种基于相关向量机的LiDAR点云数据分类算法。在分析稀疏贝叶斯分类模型及参数推断、预测基础上,利用... 针对支持向量机应用于机载LiDAR点云数据分类时存在的模型稀疏性弱、预测结果缺乏概率意义、核函数必须满足Mercer定理等缺点,提出了一种基于相关向量机的LiDAR点云数据分类算法。在分析稀疏贝叶斯分类模型及参数推断、预测基础上,利用拉普拉斯方法将相关向量机分类问题转化为回归问题,通过最大化边缘似然函数估计超参数,选择序列稀疏贝叶斯学习方法提高训练速度,构造一对余、一对一分类器实现点云数据多元分类研究。选择Niagara地区及非洲某地区的LiDAR点云数据进行实验,实验结果验证了基于相关向量机的点云分类方法的优势。 展开更多
关键词 激光雷达 分类 稀疏贝叶斯模型 相关向量
在线阅读 下载PDF
基于向量机学习算法的多模式分类器的研究及改进 被引量:11
14
作者 柳长源 毕晓君 韦琦 《电机与控制学报》 EI CSCD 北大核心 2013年第1期114-118,共5页
为了提高向量机"一对一"学习算法在多模式识别中的分类效率,对基于支持向量机和相关向量机算法进行多模式分类的方法进行研究,发现比较次数过多是该方法计算量大的主要原因。提出了一种在每轮比较中,排除最差类别的新方法。... 为了提高向量机"一对一"学习算法在多模式识别中的分类效率,对基于支持向量机和相关向量机算法进行多模式分类的方法进行研究,发现比较次数过多是该方法计算量大的主要原因。提出了一种在每轮比较中,排除最差类别的新方法。该方法使比较次数逐级减少,并且当类别数较多时,总计算量减少尤其明显。通过理论分析和对数据分类的实验结果表明,新方法与传统分类器相比,在基本不影响分类正确率的前提下,机器训练与识别次数显著减少,算法运行速度明显提高。 展开更多
关键词 模式识别 支持向量 相关向量 分类 “一对一”算法
在线阅读 下载PDF
支持向量机的多分类算法 被引量:33
15
作者 胡国胜 钱玲 张国红 《系统工程与电子技术》 EI CSCD 北大核心 2006年第1期127-132,共6页
系统介绍了统计学习理论(statistical learning theory,SLT)与支持向量机(support vector machine,SVM)的基本思想和算法,总结和比较了二分类和多分类两种情况下支持向量机的主要训练算法。与人工神经网络相比,分析了支持向量机算法的... 系统介绍了统计学习理论(statistical learning theory,SLT)与支持向量机(support vector machine,SVM)的基本思想和算法,总结和比较了二分类和多分类两种情况下支持向量机的主要训练算法。与人工神经网络相比,分析了支持向量机算法的优点。归纳了支持向量机在诸如模式识别、函数逼近、时间序列预测、故障预测和识别、信息安全、电力系统以及电力电子领域中的应用。最后对SVM前景作了展望。 展开更多
关键词 模式识别 电力系统 电力电子 支持向量 多分类算法
在线阅读 下载PDF
相关向量机分类方法的研究进展与分析 被引量:24
16
作者 赵春晖 张燚 《智能系统学报》 北大核心 2012年第4期294-301,共8页
相关向量机(RVM)是一种基于贝叶斯模型的监督机器学习算法,可用于处理回归以及分类问题.与支持向量机(SVM)相比,相关向量机的优点在于其输出结果是一种概率模型,其相关向量的个数远远小于支持向量的个数,并且测试时间短.总结了相关向量... 相关向量机(RVM)是一种基于贝叶斯模型的监督机器学习算法,可用于处理回归以及分类问题.与支持向量机(SVM)相比,相关向量机的优点在于其输出结果是一种概率模型,其相关向量的个数远远小于支持向量的个数,并且测试时间短.总结了相关向量机的基本原理及主要应用领域,详细阐述了相关向量机的模型结构以及分类方法,重点介绍了在高光谱图像分类中的应用.并针对RVM算法在高光谱图像分类中的不足,给出了多种改进方案,并作以比较.希望对研究者今后的研究有所启发,以促进该领域的发展. 展开更多
关键词 相关向量 改进型相关向量 高光谱图像 分类算法
在线阅读 下载PDF
基于支持向量机分类算法的湖泊水质评价研究 被引量:23
17
作者 徐红敏 杨天行 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2006年第4期570-573,共4页
支持向量机(SVM)是由Vapnik等人提出的建立在统计学习理论基础上的一种小样本机器学习方法,最初用于解决二分类问题。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题。又由于采用了核函数思... 支持向量机(SVM)是由Vapnik等人提出的建立在统计学习理论基础上的一种小样本机器学习方法,最初用于解决二分类问题。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题。又由于采用了核函数思想,使它将非线性问题转化为线性问题来解决,降低了算法的复杂度。利用支持向量机多类分类算法,构建湖泊水环境评价模型。实验结果表明,该方法能够正确地对湖泊水环境质量进行分类评价。 展开更多
关键词 湖泊 支持向量 分类算法 水质评价
在线阅读 下载PDF
一种加权支持向量机分类算法 被引量:20
18
作者 贾银山 贾传荧 《计算机工程》 CAS CSCD 北大核心 2005年第12期23-25,共3页
提出了一种加权C-SVM分类算法,并从理论上分析了算法的性能。该算法通过引入类权重因子和样本权重因子实现了类加权和样本加权两种功能。实验结果表明,该算法可以有效地解决由类大小不均衡引发的分类错误问题以及重要样本的错分问题。
关键词 支持向量 加权支持向量 分类算法 器学习
在线阅读 下载PDF
一种新的模糊支持向量机多分类算法 被引量:8
19
作者 刘太安 梁永全 薛欣 《计算机应用研究》 CSCD 北大核心 2008年第7期2041-2042,共2页
在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合... 在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合分类方法,提出了一种基于一对多组合的模糊支持向量机多分类算法,并与1-a-1(one-against-one)组合和1-a-a组合的分类算法比较。数值实验表明,该算法是有效的,有较高的分类准确率,有更好的泛化能力。 展开更多
关键词 支持向量 模糊支持向量 一对多组合 隶属函数 多分类算法
在线阅读 下载PDF
基于小波核主成分分析的相关向量机高光谱图像分类 被引量:19
20
作者 赵春晖 张燚 王玉磊 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1905-1910,共6页
相关向量机(RVM)高光谱图像分类是一种较新的高光谱图像分类方法,然而算法本身存在对于高维大样本数据训练时间过长、分类精度不高的问题。针对这些问题,该文提出一种基于新型核主成分分析的RVM分类方法。该方法首先将核函数引入到... 相关向量机(RVM)高光谱图像分类是一种较新的高光谱图像分类方法,然而算法本身存在对于高维大样本数据训练时间过长、分类精度不高的问题。针对这些问题,该文提出一种基于新型核主成分分析的RVM分类方法。该方法首先将核函数引入到主成分分析中,然后应用小波核函数代替传统核函数,利用小波核函数的多分辨率分析特点,进一步提高核主成分分析(KPCA)非线性映射能力,最终将新型核主成分分析算法与相关向量机相结合,对高光谱图像进行分类。仿真实验结果表明,将所提出的方法应用于AVIRIS美国印第安纳州实验田高光谱数据预处理后,类内类间距离比降低20%,方差整体增幅较大,最终将处理后的数据应用于相关向量机的高光谱图像分类中,分类精度提升3%~5%。 展开更多
关键词 高光谱图像分类 相关向量 核函数主成分分析 小波核函数
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部