期刊文献+
共找到2,292篇文章
< 1 2 115 >
每页显示 20 50 100
人工神经网络和支持向量机性能比较及其在DMD疾病识别中的应用 被引量:9
1
作者 章鸣嬛 陈瑛 +1 位作者 沈瑛 马军山 《上海理工大学学报》 CAS 北大核心 2016年第4期346-351,共6页
对人工神经网络(ANN)和支持向量机(SVM)这两种机器学习方法进行了分析与比较,并分别利用两种算法对神经肌肉罕见病DMD的磁共振图像(MRI)数据进行建模、分类预测.经对比后得出结论:两种算法结果均表明,DMD的两类MRI(T1和T2)中,T1更具特征... 对人工神经网络(ANN)和支持向量机(SVM)这两种机器学习方法进行了分析与比较,并分别利用两种算法对神经肌肉罕见病DMD的磁共振图像(MRI)数据进行建模、分类预测.经对比后得出结论:两种算法结果均表明,DMD的两类MRI(T1和T2)中,T1更具特征性,故此类患者的MRI检查可仅进行T1扫描;若能选择合适的模型参数,则两种算法模型均具有极好的分类预测效果,其灵敏度、特异度和准确率分别高达98.5%,97.3%,97.9%和96.9%,97.3%,97.1%;利用机器学习方法对DMD患者的MRI进行分析处理可作为该病无创检测的技术探索,有望为临床提供客观有效的辅助诊断手段. 展开更多
关键词 人工神经网络 支持向量 DMD疾病 磁共振图像 分类预测
在线阅读 下载PDF
人工神经网络及支持向量机在降雨量预报中的应用 被引量:11
2
作者 张乐坚 程明虎 田付友 《高原气象》 CSCD 北大核心 2010年第4期982-991,共10页
使用误差反向传播网络(BPN)和约当网络(JN)两种人工神经网络(ANN)以及支持向量机(SVM)对降雨量进行了1h和3h预报的研究,并与交叉相关法(CCM)外推预报的结果进行了比较。针对安徽省2003年6~7月的降水过程,比较了网络(文中指BPN、JN和SVM... 使用误差反向传播网络(BPN)和约当网络(JN)两种人工神经网络(ANN)以及支持向量机(SVM)对降雨量进行了1h和3h预报的研究,并与交叉相关法(CCM)外推预报的结果进行了比较。针对安徽省2003年6~7月的降水过程,比较了网络(文中指BPN、JN和SVM)和CCM预报降雨量与实况降雨量的雨带分布、强降雨区域和强度;使用命中率(HR)、虚警率(FAR)、漏报率(NAP)、临界成功指数(CSI)、相关系数(CC)和均方根误差(RMSE)这6个指标并结合天气分析检验网络和CCM的预报效果。结果表明:网络和CCM对雨带和强降雨区域的预报比较准确,但是对强降雨中心位置和强度的预报与实况存在差异;在使用HR、FAR、NAP和CSI检验预报效果时设定的阈值对预报结果的评价有影响;预报的中小尺度结构与天气分析的结果一致;网络与CCM以及不同的网络之间的预报结果存在着差异;连续预报的结果表明,与CCM相比,网络对3h预报的效果优于1h的。 展开更多
关键词 人工神经网络 支持向量 降雨量预报
在线阅读 下载PDF
支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究 被引量:68
3
作者 李苍柏 肖克炎 +5 位作者 李楠 宋相龙 张帅 王凯 楚文楷 曹瑞 《地球学报》 EI CAS CSCD 北大核心 2020年第2期309-319,共11页
地球化学勘查是通过发现异常、解释评价异常进行找矿的。因此,地球化学异常识别对矿产资源的定位、定量预测具有重要的的指示作用。在大数据时代的背景下,机器学习方法不要求数据满足正态分布的分布形式,且具有非线性以及泛化能力强等特... 地球化学勘查是通过发现异常、解释评价异常进行找矿的。因此,地球化学异常识别对矿产资源的定位、定量预测具有重要的的指示作用。在大数据时代的背景下,机器学习方法不要求数据满足正态分布的分布形式,且具有非线性以及泛化能力强等特点,因而逐渐地被应用于矿产资源的定量预测评价,如神经网络、支持向量机、贝叶斯网络、随机森林、受限玻尔兹曼机、极限学习机等。本文通过设计理论实验,可视化了不同算法,提出了不同机器学习方法在不同地区的地球化学异常信息提取中的效果存在不一致性的假设。在此基础上,以湖南香花岭锡多金属矿整装勘查区及甘肃合作金矿整装勘查区的地球化学异常提取为研究内容,将人工神经网络、随机森林以及支持向量机应用于研究区地球化学异常信息的提取与识别工作。在香花岭研究区,人工神经网络的结果较好,在合作研究区,随机森林的结果较好,从而验证了上述假设。通过生成两研究区的地球化学异常图,讨论了该方法在两研究区地球化学异常的地质意义和该方法的可靠性与实用性。此外,还完善了基于多种监督机器学习方法的地球化学异常信息提取流程,为软件开发提供了一定的理论依据。 展开更多
关键词 器学习 地球化学异常 人工神经网络 森林 支持向量
在线阅读 下载PDF
支持向量机和人工神经网络在冠状动脉旁路移植术后晚期静脉移植血管病患病风险预测中的应用 被引量:4
4
作者 凤思苑 巩晓文 +5 位作者 崔壮 高静 李长平 刘媛媛 刘寅 马骏 《中国卫生统计》 CSCD 北大核心 2019年第4期493-496,共4页
目的探讨支持向量机和人工神经网络在预测个体冠状动脉旁路移植术后晚期静脉移植血管病患病风险中的应用。方法选取2015年3月-2017年12月天津市胸科医院CABG术后超过一年的冠状动脉粥样硬化性心脏病患者,分别应用径向基SVM、多项式SVM... 目的探讨支持向量机和人工神经网络在预测个体冠状动脉旁路移植术后晚期静脉移植血管病患病风险中的应用。方法选取2015年3月-2017年12月天津市胸科医院CABG术后超过一年的冠状动脉粥样硬化性心脏病患者,分别应用径向基SVM、多项式SVM和BP神经网络建立晚期SVGD预测模型。通过受试者工作特征曲线下面积、精确率、召回率及F1指标评价模型的预测性能。结果 BP神经网络在测试集中反映模型精确率和召回率的F1值为0.84,而ROC曲线下面积均值为0.773,大于其他两种SVM预测模型。结论 BP神经网络对晚期SVGD的预测表现更佳,有助于临床的辅助诊断。 展开更多
关键词 静脉移植血管病 支持向量 人工神经网络 预测模型
在线阅读 下载PDF
基于卷积神经网络和支持向量机的水稻种子图像分类识别 被引量:19
5
作者 杨红云 黄琼 +3 位作者 孙爱珍 王映龙 肖小梅 罗建军 《中国粮油学报》 CAS CSCD 北大核心 2021年第12期144-150,共7页
针对外形相似的水稻种子间分类难、识别正确率低等问题,提出一种卷积神经网络与支持向量机相结合的方法(CNN_SVM)对8类水稻种子进行分类识别。首先对图像进行切割、旋转等预处理后建立水稻种子图像数据库,其次通过提取图像的方向梯度直... 针对外形相似的水稻种子间分类难、识别正确率低等问题,提出一种卷积神经网络与支持向量机相结合的方法(CNN_SVM)对8类水稻种子进行分类识别。首先对图像进行切割、旋转等预处理后建立水稻种子图像数据库,其次通过提取图像的方向梯度直方图(HOG)、LBP纹理、SIFT描述子和CNN特征,分别建立SVM、KNN和Softmax分类模型对水稻种子图像进行分类识别比较。最后采用随机加入噪声点方法模拟噪声干扰稻种和调整色彩饱和度方法模拟不同年份稻种后进行分类识别。结果表明CNN_SVM模型对正常、噪声干扰和不同年份的水稻种子图像识别正确率分别为96.2%、95.8%和96.1%,识别单张图像时间为4.57 ms,明显优于CNN、SVM的传统模型。模型的抗噪和泛化能力强,能满足实际生活中水稻种子分类识别需求。 展开更多
关键词 水稻种子 卷积神经网络 分类识别 支持向量
在线阅读 下载PDF
神经网络集成与支持向量机在多值分类问题上的比较研究 被引量:2
6
作者 孔安生 王洪澄 李国正 《计算机工程与应用》 CSCD 北大核心 2005年第1期46-47,119,共3页
神经网络集成和支持向量机都是在机器学习领域很流行的方法。集成方法成功地提高了神经网络的稳健性和精度,其中选择性集成方法通过算法选择差异度大的个体,取得了很好的效果。而支持向量机更是克服了神经网络的局部最优,不稳定等缺点,... 神经网络集成和支持向量机都是在机器学习领域很流行的方法。集成方法成功地提高了神经网络的稳健性和精度,其中选择性集成方法通过算法选择差异度大的个体,取得了很好的效果。而支持向量机更是克服了神经网络的局部最优,不稳定等缺点,也在多个方面取得了很好的结果。该文着重研究这两种方法在小样本多类数据集上的性能,在四个真实数据集上的结果表明,支持向量机性能要比神经网络集成稍好. 展开更多
关键词 神经网络集成 支持向量 多值分类问题
在线阅读 下载PDF
天空云量预报及支持向量机和神经网络方法比较研究 被引量:31
7
作者 熊秋芬 胡江林 陈永义 《热带气象学报》 CSCD 北大核心 2007年第3期255-260,共6页
使用支持向量机和人工神经网络两种方法,分别建立了天空云量的预报模型。利用2001年5月1日~2004年12月31日的武汉市地面、高空观测值及欧洲中心的24小时预报场等资料,通过按不同比例随机抽取样本进行交叉验证的方法,分析了SVM和ANN模... 使用支持向量机和人工神经网络两种方法,分别建立了天空云量的预报模型。利用2001年5月1日~2004年12月31日的武汉市地面、高空观测值及欧洲中心的24小时预报场等资料,通过按不同比例随机抽取样本进行交叉验证的方法,分析了SVM和ANN模型的预报能力和鲁棒性;然后再用全部样本资料建立预报模型,来预报2005年1月1日~5月31日武汉市天空云量。交叉验证和实例预报的结果显示:虽然SVM和ANN模型都表现了较好的预报能力,但SVM的预报能力高于ANN方法,且在计算速度上有ANN无法比拟的优势。 展开更多
关键词 支持向量 人工神经网络 模型 天空云量 预报
在线阅读 下载PDF
基于单分类支持向量机的煤矿防爆电气设备振动故障自动检测 被引量:10
8
作者 郑铁华 王飞 +1 位作者 赵格兰 杜春晖 《工矿自动化》 北大核心 2025年第2期106-112,共7页
煤矿防爆电气设备在运行过程中产生的振动会损害其机械完整性,导致紧固件松动、零部件磨损,并改变设备的结构与振动模态,进而引发信号特征的复杂变化,使得正常振动频率与故障引发的新频率成分相互混淆,模糊了正常信号与故障信号之间的界... 煤矿防爆电气设备在运行过程中产生的振动会损害其机械完整性,导致紧固件松动、零部件磨损,并改变设备的结构与振动模态,进而引发信号特征的复杂变化,使得正常振动频率与故障引发的新频率成分相互混淆,模糊了正常信号与故障信号之间的界限,从而降低传统检测方法在故障检测中的准确性。针对上述问题,提出一种基于单分类支持向量机(OCSVM)的煤矿防爆电气设备振动故障自动检测方法。首先,构造设备的正常状态特征和振动故障状态特征,根据OCSVM的特性,将正常状态特征序列设定为OCSVM核函数的决策边界学习目标。考虑煤矿防爆电气设备振动故障信号呈现非线性和高维特征,选定多项式核作为OCSVM的核函数。然后,采用网格搜索和K−交叉验证相结合的方式对OCSVM进行参数调优,以使OCSVM达到更好的性能。最后,通过求取OCSVM目标函数的最优解,确定最优决策边界,以此实现煤矿防爆电气设备振动故障的自动检测。实验结果显示:①在迭代次数为20时,OCSVM算法算法可完成收敛,达到稳定。②基于OCSVM的电气设备信号划分实验中,借助多项式核函数能精准划分样本实现检测。③振动故障自动检测性能分析中,所提方法在各样本量下准确率均显著高于红外热成像技术检测方法、基于灰狼优化支持向量机模型检测方法,小样本量时准确率达98.25%且稳定性好。 展开更多
关键词 煤矿防爆电气设备 振动故障检测 分类支持向量 变分模态分解 熵矩阵
在线阅读 下载PDF
卷积神经网络和支持向量机算法在塑料近红外光谱分类中的模型应用 被引量:11
9
作者 张文杰 焦安然 +3 位作者 田静 王晓娟 王斌 徐晓轩 《分析测试学报》 CAS CSCD 北大核心 2021年第7期1062-1067,共6页
机器学习算法的应用使得塑料自动分类成为可能,而废旧塑料的分类回收对保护环境、节约资源有重要意义。该文结合近红外光谱分析技术,比较了使用一维卷积神经网络(1D CNN)和多元散射处理后支持向量机算法(MSC-SVM)建模的效果,及对PP新生... 机器学习算法的应用使得塑料自动分类成为可能,而废旧塑料的分类回收对保护环境、节约资源有重要意义。该文结合近红外光谱分析技术,比较了使用一维卷积神经网络(1D CNN)和多元散射处理后支持向量机算法(MSC-SVM)建模的效果,及对PP新生料、PP再生料、PE新生料、PE再生料4种塑料分类的准确率。基于100个塑料样本近红外光谱数据的分类结果表明,验证集上1D CNN模型准确率为91.5%,MSCSVM模型准确率为90.8%。1D CNN模型用于识别PP和PE新生料时,准确率可达100%。证明1D CNN建模方法在小数据集上进行准确塑料分类是可行的。 展开更多
关键词 近红外光谱 卷积神经网络 支持向量 塑料分类
在线阅读 下载PDF
基于Transformer与单分类支持向量机的窃电时间识别方法
10
作者 陈静 王铭海 +5 位作者 刘煜寒 江灏 缪希仁 林蔚青 郑垂锭 赵睿 《电网技术》 北大核心 2025年第5期2109-2118,I0093,共11页
窃电量的追回是窃电检测的最终目的,准确的窃电时间识别是进行窃电量精确估算的重要依据。然而,现有窃电检测方法侧重于识别窃电行为,对窃电时间缺乏深入分析,亟需研究基于窃电用户自身计量数据的窃电时间识别模型,为窃电量的估算提供... 窃电量的追回是窃电检测的最终目的,准确的窃电时间识别是进行窃电量精确估算的重要依据。然而,现有窃电检测方法侧重于识别窃电行为,对窃电时间缺乏深入分析,亟需研究基于窃电用户自身计量数据的窃电时间识别模型,为窃电量的估算提供依据。针对窃电时间识别问题,提出一种基于Transformer与单分类支持向量机(one-class support vector machine,OCSVM)的半监督窃电数据分类方法。首先,对用户负荷数据按日进行切割,将窃电时间识别问题转化为窃电日负荷数据判别问题;然后,使用Transformer作为重构模型学习用户的正常用电模式与规律,以重构出基于用户日负荷数据的重构值;最后,将构造重构误差曲线作为OCSVM的输入,构造正常用电行为的决策边界,进而判别出窃电数据,以实现窃电时间识别。根据南方某省智能电表用户数据进行算例分析,验证了该方法的可行性和有效性,实验结果表明该方法具有较好的灵敏性和鲁棒性。 展开更多
关键词 窃电 窃电时间识别 半监督学习 Transformer模型 分类支持向量
在线阅读 下载PDF
基于BP人工神经网络的有机化合物爆炸下限预测 被引量:3
11
作者 时静洁 赵薇 +1 位作者 陈小林 陈常豪 《消防科学与技术》 CAS 北大核心 2023年第5期609-614,621,共7页
运用定量结构-性质关系对458种有机化合物的爆炸下限展开预测研究。首先运用Dragon 2.1软件计算并预筛出708种分子描述符,随后采用遗传算法确定了5个特征分子描述符作为模型的输入变量,最后运用SPSS和MATLAB分别构建了多元线性回归线性... 运用定量结构-性质关系对458种有机化合物的爆炸下限展开预测研究。首先运用Dragon 2.1软件计算并预筛出708种分子描述符,随后采用遗传算法确定了5个特征分子描述符作为模型的输入变量,最后运用SPSS和MATLAB分别构建了多元线性回归线性模型、支持向量机与人工神经网络两种非线性模型。研究结果为:MLR模型的训练集和测试集的复相关系数R2分别为0.8387和0.8588;SVM模型的R^(2)分别为0.8569和0.8779;ANN模型的R2分别为0.9284和0.9328。由此表明,无论是训练集还是测试集,SVM模型的预测效果均优于MLR模型,ANN模型的预测效果均优于SVM模型,有机化合物的爆炸下限与其分子结构之间存在着较强的非线性关系。此外,本研究采用内外验证方法及与其他研究的比较对模型性能进行了验证,证实了ANN模型对爆炸下限具有较好的预测能力。通过绘制Wiliams图分析了模型的应用域,验证了所建模型均具有良好的泛化能力和鲁棒性。通过QSPR方法预测有机化合物的爆炸下限,能为危险化学品的风险管控及安全工艺的研究提供有力的理论和技术支持。 展开更多
关键词 定量结构-性质关系 人工神经网络 多元线性回归 支持向量 爆炸下限 化合物
在线阅读 下载PDF
基于支持向量机的模糊小波神经网络
12
作者 张晓光 匡颖芝 +1 位作者 耿道华 吴行标 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第11期1351-1354,1368,共5页
针对高维输入小波网络的初始参数和网络结构非常复杂且计算量大的问题,提出用支持向量机(SVM)确定小波网络的初始参数和网络结构的方法。首先,使用有监督模糊聚类算法从聚类中抽取模糊规则,然后对每一个规则的后件使用支持向量机方法确... 针对高维输入小波网络的初始参数和网络结构非常复杂且计算量大的问题,提出用支持向量机(SVM)确定小波网络的初始参数和网络结构的方法。首先,使用有监督模糊聚类算法从聚类中抽取模糊规则,然后对每一个规则的后件使用支持向量机方法确定小波网络的结构和初始参数,最后采用梯度下降方法调节模糊小波网络中的参数,使得模糊小波网络输出与期望输出之间的误差较小。仿真结果表明:该算法与传统的模糊神经网络(FNN)相比显著提高了分类精度。 展开更多
关键词 模糊小波神经网络 支持向量 有监督模糊聚类 分类
在线阅读 下载PDF
火箭发动机故障检测的快速增量单分类支持向量机算法 被引量:4
13
作者 张万旋 张箭 +2 位作者 卢哲 薛薇 张楠 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期115-122,共8页
为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单... 为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单分类支持向量机模型进行改进,并应用于液体火箭发动机异常检测,使单分类支持向量机检测模型具备对不同台次、不同工况的自适应性,提高了模型的计算速度。对多台次热试车数据的分析结果表明,该模型十分有效,训练速度快,具备实用价值。 展开更多
关键词 分类支持向量 特征提取 自适应检测 增量学习 异常检测
在线阅读 下载PDF
基于遗传和引导聚集算法优化支持向量机的白酒基酒品质评估方法
14
作者 庞婷婷 张贵宇 +4 位作者 刘科材 李晓平 庹先国 彭英杰 曾祥林 《食品科学》 北大核心 2025年第6期275-284,共10页
基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support v... 基酒组分具有复杂多样性,为提高其等级分类预测模型的精度和泛化能力,在基酒气相色谱-质谱数据基础上设计评价模型,提出一种结合遗传算法(genetic algorithm,GA)和引导聚集算法(Bootstrap aggregating,Bagging)优化支持向量机(support vector machine,SVM)分类器的方法,以解决单一SVM分类器在分类精度和泛化能力的不足。研究使用Spearman相关性筛选了36种关键物质,选择核主成分分析法提取了12个核主成分,并使累计贡献率达到96.06%,将其作为模型输入。选择性能最优的径向基核函数支持向量机,使用对数据多样性适应较强的并行计算Bagging集成算法,构建Bagging-SVM分类器进行基酒等级分类,最后,通过GA优化Bagging-SVM分类器的参数(C、γ、N),构建GA-Bagging-SVM模型。结果显示,GA-Bagging-SVM模型的准确率、精确度、召回率、F1-Score分别为96.77%、96.90%、96.77%、96.78%,优于Bagging-SVM和SVM模型,相比单一SVM模型提升了6.45%、5.61%、6.45%、6.42%,比Bagging-SVM模型提升了3.22%、2.29%、3.22%和3.15%。该方法可作为白酒基酒品质评估模型的优化方法。 展开更多
关键词 基酒 支持向量 引导聚集算法 遗传算法 分类预测
在线阅读 下载PDF
基于单分类支持向量机和主动学习的网络异常检测研究 被引量:32
15
作者 刘敬 谷利泽 +1 位作者 钮心忻 杨义先 《通信学报》 EI CSCD 北大核心 2015年第11期136-146,共11页
对基于支持向量机和主动学习的异常检测方法进行了研究,首先利用原始数据采用无监督方式建立单分类支持向量机模型,然后结合主动学习找出对提高异常检测性能最有价值的样本进行人工标记,利用标记数据和无标记数据以半监督方式对基于单... 对基于支持向量机和主动学习的异常检测方法进行了研究,首先利用原始数据采用无监督方式建立单分类支持向量机模型,然后结合主动学习找出对提高异常检测性能最有价值的样本进行人工标记,利用标记数据和无标记数据以半监督方式对基于单分类支持向量机的异常检测模型进行扩展。实验结果表明,所提方法能够利用少量标记数据获取性能提升,并能够通过主动学习减小人工标记代价,更适用于实际网络环境。 展开更多
关键词 网络安全 异常检测 分类支持向量 主动学习
在线阅读 下载PDF
基于图嵌入与支持向量机的社交网络节点分类方法 被引量:15
16
作者 张陶 于炯 +2 位作者 廖彬 余光雷 毕雪华 《计算机应用研究》 CSCD 北大核心 2021年第9期2646-2650,2661,共6页
针对无属性社交网络的节点分类问题,提出了一种基于图嵌入与支持向量机,利用社交网络中节点之间关系特征,对节点进行分类的方法。首先,通过DeepWalk、LINE等多种图嵌入模型挖掘节点隐含关系特征的同时,将高维的社交网络数据转换为低维em... 针对无属性社交网络的节点分类问题,提出了一种基于图嵌入与支持向量机,利用社交网络中节点之间关系特征,对节点进行分类的方法。首先,通过DeepWalk、LINE等多种图嵌入模型挖掘节点隐含关系特征的同时,将高维的社交网络数据转换为低维embedding向量。其次,提取节点度、聚集系数、PageRank值等特征信息,组合构成节点的特征向量。然后,利用支持向量机构建节点分类预测模型对节点进行分类预测。最后,在三个公开的社交网络数据集上实验,与对比方法相比,提出的方法在社交网络节点分类任务中能取得更好的分类效果。 展开更多
关键词 社交网络 节点分类 图嵌入 支持向量 隐含关系特征
在线阅读 下载PDF
支持向量机的半监督网络流量分类方法 被引量:6
17
作者 李平红 王勇 陶晓玲 《计算机应用》 CSCD 北大核心 2013年第6期1515-1518,共4页
针对传统网络流量分类方法准确率低、开销大、应用范围受限等问题,提出一种支持向量机(SVM)的半监督网络流量分类方法。该方法在SVM训练中,使用增量学习技术在初始和新增样本集中动态地确定支持向量,避免不必要的重复训练,改善因出现新... 针对传统网络流量分类方法准确率低、开销大、应用范围受限等问题,提出一种支持向量机(SVM)的半监督网络流量分类方法。该方法在SVM训练中,使用增量学习技术在初始和新增样本集中动态地确定支持向量,避免不必要的重复训练,改善因出现新样本而造成原分类器分类精度降低、分类时间长的情况;改进半监督Tri-training方法对分类器进行协同训练,同时使用大量未标记和少量已标记样本对分类器进行反复修正,减少辅助分类器的噪声数据,克服传统协同验证对分类算法及样本类型要求苛刻的不足。实验结果表明,该方法可明显提高网络流量分类的准确率和效率。 展开更多
关键词 网络流量分类 支持向量 半监督 增量学习 协同训练
在线阅读 下载PDF
基于卷积神经网络模型的遥感图像分类 被引量:27
18
作者 付秀丽 黎玲萍 +4 位作者 毛克彪 谭雪兰 李建军 孙旭 左志远 《高技术通讯》 北大核心 2017年第3期203-212,共10页
研究了遥感图像的分类,针对遥感图像的支持向量机(SVM)等浅层结构分类模型特征提取困难、分类精度不理想等问题,设计了一种卷积神经网络(CNN)模型,该模型包含输入层、卷积层、全连接层以及输出层,采用Soft Max分类器进行分类。选取2010... 研究了遥感图像的分类,针对遥感图像的支持向量机(SVM)等浅层结构分类模型特征提取困难、分类精度不理想等问题,设计了一种卷积神经网络(CNN)模型,该模型包含输入层、卷积层、全连接层以及输出层,采用Soft Max分类器进行分类。选取2010年6月6日Landsat TM5富锦市遥感图像为数据源进行了分类实验,实验表明该模型采用多层卷积池化层能够有效地提取非线性、不变的地物特征,有利于图像分类和目标检测。针对所选取的影像,该模型分类精度达到94.57%,比支持向量机分类精度提高了5%,在遥感图像分类中具有更大的优势。 展开更多
关键词 卷积神经网络(CNN) 模型 支持向量(SVM) 特征提取 遥感图像分类
在线阅读 下载PDF
人工蜂群算法优化支持向量机的分类研究 被引量:13
19
作者 李璟民 郭敏 《计算机工程与应用》 CSCD 北大核心 2015年第2期151-155,共5页
为了提高支持向量机分类准确率,采用人工蜂群算法对支持向量机参数进行优化,并将该优化方法应用于小麦完好粒、霉变粒和发芽粒三类麦粒的识别。使用小波变换分解信号能量作为特征向量,以分类错误率的倒数作为适应度函数,利用人工蜂群算... 为了提高支持向量机分类准确率,采用人工蜂群算法对支持向量机参数进行优化,并将该优化方法应用于小麦完好粒、霉变粒和发芽粒三类麦粒的识别。使用小波变换分解信号能量作为特征向量,以分类错误率的倒数作为适应度函数,利用人工蜂群算法对支持向量机的惩罚因子和核函数宽度参数进行优化,优化SVM方法对小麦完好粒、霉变粒和发芽粒的分类正确率达到86%以上。实验结果表明,该研究有较强的实用价值,为SVM性能优化提供了一种新的方法。 展开更多
关键词 人工蜂群算法 支持向量 参数优化 小麦碰撞声 分类
在线阅读 下载PDF
基于网格搜索优化支持向量机多分类参数识别不同工艺酱酒的应用研究 被引量:6
20
作者 陈旭东 许忠平 +1 位作者 童凯 王德良 《中国酿造》 CAS 北大核心 2024年第6期213-217,共5页
为提升支持向量机(SVM)在不同工艺酱酒分类预测中的准确度,该实验利用网格搜索优化支持向量机参数,建立最优参数的支持向量机分类预测模型。通过对不同工艺酱香型白酒客观结构特征定量分析,将提取的特征信息数据经过预处理(异常值处理... 为提升支持向量机(SVM)在不同工艺酱酒分类预测中的准确度,该实验利用网格搜索优化支持向量机参数,建立最优参数的支持向量机分类预测模型。通过对不同工艺酱香型白酒客观结构特征定量分析,将提取的特征信息数据经过预处理(异常值处理、归一化操作等)后存储为样本数据集。其中样本数据分为训练样本与测试样本,通过训练样本对最优参数的SVM白酒品牌分类预测模型进行训练,测试样本对模型进行预测分类。经过试验验证,该模型的不同工艺分类识别率达到94.44%,较传统的SVM等分类算法能够快速、有效地对不同工艺的酱酒进行分类识别,显著改善分类的精度,改进后的方法实现过程也比较简单。 展开更多
关键词 不同工艺酱酒 支持向量 网格搜索 分类预测
在线阅读 下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部