期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法
1
作者 谢丽霞 魏晨阳 +2 位作者 杨宏宇 胡泽 成翔 《电子学报》 北大核心 2025年第3期849-863,共15页
针对现有恶意软件检测方法缺乏对样本特征的有效提取、过度依赖领域专家知识和运行行为监控,导致严重影响检测分类性能的问题,提出一种基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法 .通过无效样本清洗与异常值处理获... 针对现有恶意软件检测方法缺乏对样本特征的有效提取、过度依赖领域专家知识和运行行为监控,导致严重影响检测分类性能的问题,提出一种基于多维度动态加权alpha图像融合与特征增强的恶意软件检测方法 .通过无效样本清洗与异常值处理获得标准化样本集,利用三通道图像生成与多维度动态加权alpha图像融合方法生成高质量融合图像样本.采用傀儡优化算法进行数据重构,减少因数据类不平衡对检测结果造成的影响,并对重构数据样本进行图像增强.通过基于双分支特征提取与融合通道信息表示的空间注意力增强网络,分别提取图像特征和文本特征并进行特征增强,提高特征表达能力.通过加权融合的方法将增强的图像特征与文本特征进行融合,实现恶意软件家族的检测分类.实验结果表明,本文所提方法在BIG2015数据集上的恶意软件检测分类准确率为99.72%,与现有检测方法相比提升幅度为0.22~2.50个百分点. 展开更多
关键词 恶意软件检测 图像融合 傀儡优化算法 分支特征提取 数据重构 特征增强
在线阅读 下载PDF
基于多层次双分支特征增强与融合的遥感场景分类
2
作者 赵薇 程蓉 +1 位作者 续婷 白艳萍 《陕西科技大学学报》 北大核心 2025年第2期226-234,共9页
针对现有基于卷积神经网络(CNN)的遥感图像场景分类方法存在上下文信息关注不足及特征表达能力不强的问题,提出了一种基于多层次双分支特征增强与融合的遥感场景分类方法.首先以MobileNetV2为主干网络提取多尺度层次特征;然后利用跨尺... 针对现有基于卷积神经网络(CNN)的遥感图像场景分类方法存在上下文信息关注不足及特征表达能力不强的问题,提出了一种基于多层次双分支特征增强与融合的遥感场景分类方法.首先以MobileNetV2为主干网络提取多尺度层次特征;然后利用跨尺度连接分别对浅层细节特征和深层抽象特征进行双分支特征融合,同时在浅层特征融合分支引入Atrous空间金字塔池化(ASPP)模块捕获低层多尺度细节信息,在深层特征融合分支嵌入注意力机制(CBAM)模块提升模型对深层关键信息的捕捉能力;最后利用全局平均池化聚合低级空间细节特征和高级语义信息获取全面的特征表达,实现对遥感图像场景的高效分类.在UCM和RSSCN7两个遥感场景数据集上进行实验,结果表明所提方法的分类精度相较于MobileNetV2网络分别提升了3.71%和3.57%,证明该方法能有效提升遥感场景的分类精度. 展开更多
关键词 分支特征融合 图像分类 注意力机制 MobileNetV2
在线阅读 下载PDF
基于特征融合的双分支恶意代码同源性分析模型
3
作者 刘凤春 张志枫 +2 位作者 薛涛 杨光辉 魏群 《信息安全研究》 北大核心 2025年第7期594-602,共9页
在恶意代码同源性分析中,由于加密、混淆和加壳等技术产生大量恶意代码变种,导致深度学习模型对恶意代码特征提取能力不足的问题.为此,提出一种多分支卷积和Transformer构建的双分支恶意代码同源性分析模型MCAT-Net(multi-branch convol... 在恶意代码同源性分析中,由于加密、混淆和加壳等技术产生大量恶意代码变种,导致深度学习模型对恶意代码特征提取能力不足的问题.为此,提出一种多分支卷积和Transformer构建的双分支恶意代码同源性分析模型MCAT-Net(multi-branch convolution and Transformer-Net).首先,构建MCAT-Net双分支网络,一个分支是多分支卷积MBC(multi-branch convolution)模块,以MBC模块构建CNN分支,同时引入混合注意力机制,使网络在兼顾局部特征的同时更能关注核心特征;另一个分支是以Vi T为主干的Transformer模块,提取恶意代码图像的全局特征信息并提出下采样模块,在精细地保留全局特征的同时使Transformer与CNN的特征图在空间尺度对齐;其次,以级联的策略融合CNN分支的局部特征和Transformer分支的全局特征,解决网络只关注单一特征问题;最后,使用Softmax分类器对恶意代码家族进行同源性分析.实验结果表明,基于特征融合的双分支模型的分类准确率达到99.24%,相比单支CNN和单支Transformer模型,准确率分别提高0.11%和0.65%. 展开更多
关键词 分支 特征融合 多分支卷积 注意力机制 下采样
在线阅读 下载PDF
结合特征融合和通道注意力的多分支换装行人重识别
4
作者 胡涌涛 黄洪琼 《计算机工程》 北大核心 2025年第1期225-234,共10页
换装行人重识别(CC Re-ID)是行人重识别中的一个新兴研究课题,旨在找出被换衣的行人。当前方法主要集中在使用多模态数据辅助解耦表征学习,如通过脸、步态、身体轮廓等辅助数据解耦行人自身属性以减少服装影响,但这些方法泛化能力较差,... 换装行人重识别(CC Re-ID)是行人重识别中的一个新兴研究课题,旨在找出被换衣的行人。当前方法主要集中在使用多模态数据辅助解耦表征学习,如通过脸、步态、身体轮廓等辅助数据解耦行人自身属性以减少服装影响,但这些方法泛化能力较差,需要大量额外工作。此外,仅使用原始数据的方法对于相关信息的提取不够充分,性能较弱。针对CC Re-ID存在的上述问题,提出一种结合特征融合和通道注意力的多分支换装行人重识别方法(MBFC)。通过在主干网络中融入通道注意力机制,在特征通道层面学习关键信息,设计局部与全局特征融合方法以提高网络对行人细粒度特征的提取能力。此外,MBFC模型采用多分支结构,使用服装对抗损失、交叉熵标签平滑损失等多种损失函数引导模型学习与服装无关的信息,减少服装对模型的影响,从而提取到更有效的行人信息。在PRCC和VC-Clothes数据集上进行广泛实验,结果表明,所提模型在RANK-1和平均精度均值(mAP)指标上优于对比的CC Re-ID方法。 展开更多
关键词 换装行人重识别 多分支 通道注意力 特征融合 注意力机制
在线阅读 下载PDF
基于稠密局部-全局特征融合的超高清多曝光图像融合方法
5
作者 贾修一 林乔万尼 +1 位作者 郑卓然 石争浩 《电子学报》 北大核心 2025年第1期238-247,共10页
随着超高清(Ultra-High-Definition,UHD)成像技术的应用,生成高质量的UHD图像通常需要融合多幅曝光水平不同的UHD图像.然而,目前基于深度学习的多曝光图像融合方法直接融合从不同曝光水平的图像中提取的特征图,未能充分利用不同曝光级... 随着超高清(Ultra-High-Definition,UHD)成像技术的应用,生成高质量的UHD图像通常需要融合多幅曝光水平不同的UHD图像.然而,目前基于深度学习的多曝光图像融合方法直接融合从不同曝光水平的图像中提取的特征图,未能充分利用不同曝光级别图像中的特征信息,而这些特征信息对于获得良好的多曝光融合结果至关重要.为解决这一问题,我们提出了一种新颖的UHD多曝光图像融合方法,该方法结合了图像的局部和长距离依赖特征,旨在挖掘不同曝光级别图像之间的依赖关系,提取出更高阶的语义和特征.进而,利用不同级别的短连接来聚合不同粒度的特征.最后,为了过滤带噪声的特征,我们还提出了带有门控机制的多层感知器来生成高质量的超高清图像.为了更好地展示实验结果,我们还针对多曝光融合任务建立了一个UHD图像数据集.实验结果表明,在单个显存24G的GPU上执行UHD多曝光图像融合任务时,我们的方法明显优于现有方法. 展开更多
关键词 超高清图像 多曝光图像融合 稠密特征融合 分支 实时处理
在线阅读 下载PDF
基于ConvNeXt与双特征提取分支的水体提取方法
6
作者 周珂 常然然 +3 位作者 徐西志 苗茹 张广雨 王嘉茜 《计算机科学与探索》 北大核心 2025年第5期1264-1279,共16页
由于复杂的光谱混合物、地物边界模糊、环境噪声等因素的共同作用,从高分辨率遥感图像中准确识别水体边界极具挑战性。针对此问题,在PSPNet的基础上提出基于ConvNeXt与双特征提取分支的水体提取方法(CoNFM-Net)。在编码器阶段,以ConvNeX... 由于复杂的光谱混合物、地物边界模糊、环境噪声等因素的共同作用,从高分辨率遥感图像中准确识别水体边界极具挑战性。针对此问题,在PSPNet的基础上提出基于ConvNeXt与双特征提取分支的水体提取方法(CoNFM-Net)。在编码器阶段,以ConvNeXt代替ResNet50作为主干网络,利用逆瓶颈层、大卷积核等设计来增强网络的特征提取能力。在解码器阶段,设计了多尺度特征融合和上下文信息增强的双特征提取分支结构,多尺度特征融合分支为有效利用主干网络产生的多层次特征图,设计了一种双向特征融合模块(BiFFM),以解决边界识别中尺度不一致的问题;上下文信息增强分支为提高全局信息的利用率,将主干网络输出的深层特征图通过全局上下文信息获取模块(GCIM)。同时,将经过多尺度特征融合分支的最深层特征图与其进行拼接,增强模型对水体边界细节的捕捉能力。实验结果表明,该方法在LoveDA数据集、高分二号(GF-2)数据集及Sentinel-2数据集上的平均交并比和F1分数分别为89.64%、94.32%,92.60%、96.16%及93.72%、96.73%,且在同样环境下,与U-Net、DANet、CMTFNet等语义分割算法相比,该算法CoNFM-Net具有一定优势。 展开更多
关键词 水体提取 ConvNeXt 高分辨率遥感影像 特征融合 特征提取分支结构
在线阅读 下载PDF
基于PSA引导双分支神经网络特征融合的同步电机故障诊断 被引量:1
7
作者 李俊卿 苑浩 +3 位作者 黄涛 张承志 何玉灵 张波 《智慧电力》 北大核心 2024年第12期51-58,共8页
针对单一传感器信号在同步电机故障诊断中精度不高的问题,提出了1种基于金字塔切分注意力机制(PSA)的神经网络模型。首先,将三相电流信号和振动信号作为双分支输入到卷积神经网络进行特征提取,之后通过特征融合层将提取的信号特征进行... 针对单一传感器信号在同步电机故障诊断中精度不高的问题,提出了1种基于金字塔切分注意力机制(PSA)的神经网络模型。首先,将三相电流信号和振动信号作为双分支输入到卷积神经网络进行特征提取,之后通过特征融合层将提取的信号特征进行融合。其次,添加PSA注意力机制捕获不同尺度的空间信息来丰富特征空间。最后,通过输出层输出诊断结果。实验表明所提模型能够显著提升同步电机故障诊断的准确率。 展开更多
关键词 同步电机 PSA注意力机制 分支特征融合 故障诊断 神经网络
在线阅读 下载PDF
基于动态定位和特征融合的多分支细粒度识别方法 被引量:1
8
作者 杨晓强 黄加诚 《计算机工程与科学》 CSCD 北大核心 2024年第2期253-263,共11页
为了解决细粒度分类类间差异小、类内差异大的分类难点,在Swin Transformer基础上,提出了一种改进的端到端的细粒度分类模型(TBformer)。针对复杂背景对网络识别产生的干扰,使用ECA、Resnet50、SCDA相结合的动态定位模块(DLModule)捕获... 为了解决细粒度分类类间差异小、类内差异大的分类难点,在Swin Transformer基础上,提出了一种改进的端到端的细粒度分类模型(TBformer)。针对复杂背景对网络识别产生的干扰,使用ECA、Resnet50、SCDA相结合的动态定位模块(DLModule)捕获关键物体,并设计了基于DLModule的三分支特征提取模块,提高对目标判别性特征的提取能力。为了充分挖掘三分支特征蕴含的丰富细粒度信息,提出了基于ECA的特征融合方法,增强特征的全面性、精确性,提高网络对细粒度分类的鲁棒性。实验结果表明:相比基础方法,TBformer在CUB-200-2011上的准确率提升了3.19%,在Stanford Dogs上的准确率提升了3.47%,在NABirds上的准确率提升了1.09%。 展开更多
关键词 细粒度识别 特征融合 注意力机制 多分支
在线阅读 下载PDF
基于多维度特征融合的信息热度预测研究--以校园信息平台为例
9
作者 王龙 黄嘉凯 +1 位作者 逄华 李晓光 《情报杂志》 CSSCI 北大核心 2024年第12期133-141,共9页
[研究目的]面对校园信息平台中出现的信息过载情况,用户如何从海量信息中发现和获取热点信息成为了急需解决的问题。[研究方法]为了更准确地捕捉和预测信息的真实热度,提出了一种基于多维度特征融合的信息热度预测模型MIHP。该模型不仅... [研究目的]面对校园信息平台中出现的信息过载情况,用户如何从海量信息中发现和获取热点信息成为了急需解决的问题。[研究方法]为了更准确地捕捉和预测信息的真实热度,提出了一种基于多维度特征融合的信息热度预测模型MIHP。该模型不仅考虑文本内容的分析,而且将非文本特征的提取和分析纳入算法流程中。通过这种多维度的特征融合,模型能够更全面地评估信息的吸引力和传播潜力,从而更准确地反映信息的真实热度。[研究结论]在校园信息平台数据集上的实验结果表明,MIHP模型优于其他基线模型,为信息热度预测提供了新的解决思路。 展开更多
关键词 信息热度 多维度特征融合 注意力机制 校园信息平台 热度预测模型
在线阅读 下载PDF
基于流序列特征融合与注意力机制的加密流量分类方法
10
作者 李志远 吴安昊 +1 位作者 谭林 卜凡亮 《小型微型计算机系统》 北大核心 2025年第7期1718-1726,共9页
现有加密流量分类方法中对缺少对流量字节本身特征的研究,存在特征冗余、流量表征方式不全面和公开数据集中样本分布不平衡等问题.为解决上述问题,本文提出了一种基于流序列特征融合与注意力机制的加密流量分类方法SFAN(Stream Feature ... 现有加密流量分类方法中对缺少对流量字节本身特征的研究,存在特征冗余、流量表征方式不全面和公开数据集中样本分布不平衡等问题.为解决上述问题,本文提出了一种基于流序列特征融合与注意力机制的加密流量分类方法SFAN(Stream Feature Attention Network).首先,针对特征冗余问题,提出了一个基于混合神经网络的特征提取方法;其次,针对流量表征问题,结合流量原始字节序列与数据包长度序列表征网络流量,再利用注意力机制衡量不同特征的重要性;最后,针对公开数据集中样本分布不平衡的问题,在模型训练层面优化损失函数提高分类精度.利用公开数据集ISCX VPN-nonVPN进行了广泛的实验,SFAN的总体准确率达到98.49%,F1值为98.03%.实验表明,所提出的加密流量分类方法能够有效识别不同应用程序产生的网络流量. 展开更多
关键词 加密流量分类 混合神经网络 多维度特征融合 注意力机制
在线阅读 下载PDF
PMM-YOLO:多尺度特征融合的交通标志检测算法 被引量:1
11
作者 赵磊 李栋 《计算机工程与应用》 北大核心 2025年第4期262-271,共10页
交通标志在智能驾驶领域有着重要的作用,面对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,提出了一种基于YOLOv5改进的PMM-YOLO交通标志检测算法。为了能够有效提取多尺度信息,并增强模型对特征信息的表达能力,提出... 交通标志在智能驾驶领域有着重要的作用,面对交通标志尺寸小,易受遮挡,在复杂环境下容易出现漏检、错检等问题,提出了一种基于YOLOv5改进的PMM-YOLO交通标志检测算法。为了能够有效提取多尺度信息,并增强模型对特征信息的表达能力,提出了一种结合注意力机制的并行空洞卷积模块(adaptive parallel atrous convo-lution,APA),使用具有不同膨胀率的并行空洞卷积,能够有效地提取不同尺度的特征,并通过gate机制突出关键目标的特征表示,提高检测的准确性;设计了一种多分支的自适应采样(multi-branch adaptive sampling,MBAS),多分支的采样可为网络提供多条特征提取途径,丰富特征表达的多样性,并通过不同位置的权重筛选重要特征进行强化,抑制冗余特征;设计了多尺度特征融合(multi-scale feature fusion,MSFF)模块,对不同大小尺度的特征图进行拼接,充分利用多尺度信息,将多个尺度的特征图融合,以获取更全面的目标特征,提升对目标的检测效果。构建了输出重组(output reorganization,ORO)模块,增加小目标检测层并去除大目标检测层,提升对小目标的检测效果,并相应减少模型复杂度。实验结果表明,PMM-YOLO算法在TT100Ke数据集上的mAP@0.5达到了86.4%,较原YOLOv5提升了5.9个百分点,且FPS较改进前提升了4.4%,能够快速准确地对交通标志进行检测。 展开更多
关键词 交通标志检测 YOLOv5 多分支采样 特征融合 空洞卷积 注意力机制
在线阅读 下载PDF
双分支特征融合的遥感建筑物检测模型 被引量:1
12
作者 成嘉伟 郭荣佐 +1 位作者 吴建成 张浩 《计算机工程与应用》 CSCD 北大核心 2024年第22期145-153,共9页
针对遥感建筑物图像中建筑物大小不一、边缘模糊导致精度不高的问题,提出一种双分支并行融合注意力机制的网络模型TC-UNet++。针对卷积神经网络擅长提取局部特征,难以捕获全局信息的特点,引入Transformer结构以解决全局信息丢失的问题... 针对遥感建筑物图像中建筑物大小不一、边缘模糊导致精度不高的问题,提出一种双分支并行融合注意力机制的网络模型TC-UNet++。针对卷积神经网络擅长提取局部特征,难以捕获全局信息的特点,引入Transformer结构以解决全局信息丢失的问题。对于两种结构的特征维度和通道数不匹配的问题,设计一种TC(Transformer to CNN)模块以交互的方式融合不同分辨率下局部与全局特征。引入坐标注意力机制,根据像素在图像中的位置信息,定位和识别建筑物。实验结果表明,TC-UNet++在WHU数据集上交互比、准确率、总精度分别达到了93.1%、95.9%、98.8%,在不显著增加参数的情况下,展现出良好的有效性。 展开更多
关键词 TC-UNet++ 遥感建筑物图像 分支 坐标注意力机制 特征融合
在线阅读 下载PDF
基于多尺度特征融合的双分支手部姿态估计算法
13
作者 陈征 李晋江 《计算机工程与设计》 北大核心 2024年第10期3059-3065,共7页
由于RGB图像的深度歧义性,关节点的深度坐标相对于关节点的二维图像坐标来说更难预测。提出一种基于手部多尺度特征融合的双分支手部姿态估计算法,将手部关节点的二维图像坐标和深度坐标进行分组预测。采用FPN提取手部多尺度特征,提出... 由于RGB图像的深度歧义性,关节点的深度坐标相对于关节点的二维图像坐标来说更难预测。提出一种基于手部多尺度特征融合的双分支手部姿态估计算法,将手部关节点的二维图像坐标和深度坐标进行分组预测。采用FPN提取手部多尺度特征,提出特征融合模块,对手部多尺度特征进行融合增强,得到手部高层特征和低层特征;提出双分支网络结构,利用融合之后的手部高层特征和低层特征分别预测手部关节点的深度坐标和二维图像坐标。在两个公开的手势数据集上进行了充分实验,与当前最好方法相比,所提方法在平均关节误差指标上取得了当前最好结果。 展开更多
关键词 手部姿态估计 多尺度特征融合 特征提取 平均关节误差 人机交互 分组预测 分支网络
在线阅读 下载PDF
基于多分支结构的手写字图像特征提取自适应算法
14
作者 郭晓静 赵小源 邹松林 《工程科学与技术》 北大核心 2025年第3期247-255,共9页
飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用... 飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用情形,导致字符特征提取困难且识别精度不高。为了针对性地提升平均识别准确率和速度,减少结构相似字、结构复杂字等的错误识别,本文提出一种多分支卷积与特征融合提取结构。利用深层卷积的多尺度特征提取优势,引入改进的重参数化多分支结构来改善图像全局、局部特征提取效果;采用全卷积实现区域空间特征与图像深层特征融合,在分类过程中,提出融合全卷积分类器结构,依据字符特征复杂程度不同自适应分类,改善相似字与复杂字类间、类内的分类识别效果。与主流的手写字识别方法相比,改进后网络结构的存储大小为69.1 MB;在汉字数据集上的实验表明,识别精度与速度均大幅提升,模型首次预测准确率和前5次预测准确率分别达到97.50%和99.79%。模型对相似字符、中英文字符的识别模型优势明显,在包含了中英文和数字的数据集上,改进后结构存储大小为69.2 MB,实验结果中首次预测准确率达到97.23%,推理速度达到1 400张/s,对飞机地面维护工卡识别等特定领域有一定价值。 展开更多
关键词 脱机手写汉字识别 全卷积 重参数化结构 空间特征融合 重参数化多分支卷积算法
在线阅读 下载PDF
基于三分支对抗学习和补偿注意力的红外和可见光图像融合 被引量:1
15
作者 邸敬 任莉 +2 位作者 刘冀钊 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第5期510-521,共12页
针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力... 针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力机制构建局部-全局三分支提取特征信息。然后,利用通道特征和空间特征变化构建补偿注意力机制提取全局信息,更进一步提取红外目标和可见光细节表征。其次,设计聚焦双对抗鉴别器,以确定融合结果和源图像之间的相似分布。最后,选用公开数据集TNO和RoadScene进行实验并与其他9种具有代表性的图像融合方法进行对比,本文提出的方法不仅获得纹理细节更清晰、对比度更好的融合结果,而且客观度量指标优于其他先进方法。 展开更多
关键词 红外可见光图像融合 局部-全局三分支 局部特征提取 补偿注意力机制 对抗学习 聚焦双对抗鉴别器
在线阅读 下载PDF
融合双分支特征和注意力机制的葡萄病虫害识别模型 被引量:17
16
作者 彭红星 徐慧明 刘华鼐 《农业工程学报》 EI CAS CSCD 北大核心 2022年第10期156-165,共10页
葡萄病虫害识别是精细化防治的前提。针对现有研究中存在的数据集少、识别精度低、模型参数量大等问题,该研究构建包含健康叶片、3类病害叶片和16类虫害的葡萄病虫害数据集,提出基于改进MobileNet V2模型的葡萄病虫害识别模型。首先在Mo... 葡萄病虫害识别是精细化防治的前提。针对现有研究中存在的数据集少、识别精度低、模型参数量大等问题,该研究构建包含健康叶片、3类病害叶片和16类虫害的葡萄病虫害数据集,提出基于改进MobileNet V2模型的葡萄病虫害识别模型。首先在MobileNet V2模型的反向残差模块中嵌入坐标注意力(Coordinate Attention,CA)机制,提升模型的信息表征能力;然后使用深度可分离卷积设计双分支特征融合模块,加强模型的特征提取能力;最后对模型的通道数进行调整,精简模型结构。试验结果表明:MobileNet_Vitis在葡萄病虫害数据集上的识别准确率和F1分数为89.16%和80.44%,相比改进前的MobileNet V2提高了1.83和9.31个百分点,而模型参数大小为7.85 MB,减少了8.5%。与ResNet101、ShuffleNetV2、MobileNetV3和GhostNet相比,MobileNet_Vitis的识别精度和F1分数更高,参数量更小。MobileNet_Vitis对单张葡萄病虫害图像的推理时间为17.53 ms,可以达到快速识别的要求。该研究提出的模型能够较好地识别葡萄病虫害,并且较大幅度地减少模型的参数量。将MobileNet_Vitis模型部署到移动端的小程序上,可为葡萄病虫害的防治提供帮助。 展开更多
关键词 病虫害 图像识别 葡萄 MobileNet V2 分支特征融合 坐标注意力机制
在线阅读 下载PDF
采用级联策略融合边界特征的多尺度息肉分割网络
17
作者 易见兵 万建辉 +2 位作者 曹锋 李俊 陈鑫 《光学精密工程》 EI CAS CSCD 北大核心 2024年第18期2846-2860,共15页
结直肠息肉分割能有效辅助医生筛查大肠腺瘤,但息肉分割存在噪声较多、边界区分度不够等问题。针对以上问题,本文设计了一种采用级联策略融合边界特征的多尺度息肉分割网络。首先,本文提出了一种改进的通道分组空间增强模块,以增强骨干... 结直肠息肉分割能有效辅助医生筛查大肠腺瘤,但息肉分割存在噪声较多、边界区分度不够等问题。针对以上问题,本文设计了一种采用级联策略融合边界特征的多尺度息肉分割网络。首先,本文提出了一种改进的通道分组空间增强模块,以增强骨干网络提取的图像特征,从而提高通道和空间位置的相关性。其次,考虑到边界区分度不够,设计了一个级联特征融合网络,以更好地保留边界信息并提高边界区分度,从而提高分割精度。最后,引入了一种双分支混合上采样模块来获取更多的特征细节信息,以实现特征的互补以及捕获更完整有效的特征。在CVC-ClinicDB和Kvasir数据集上进行测试,本文算法的平均Dice系数分别为0.944,0.920,平均交并比分别为0.900,0.869;而M2SNet算法的平均Dice系数分别为0.922,0.912,平均交并比分别为0.880,0.861。在ETIS-LaribPolypDB,CVC-300和CVC-ColonDB数据集上进行测试,本文算法的平均Dice系数分别为0.776,0.915,0.782;而M2SNet算法的平均Dice系数分别为0.749,0.903,0.758。实验结果表明本文算法的分割精度较高,泛化能力较强。 展开更多
关键词 多尺度息肉分割 通道分组空间增强 边界特征增强 级联特征融合 分支上采样
在线阅读 下载PDF
多层次特征融合与超图卷积的生成对抗壁画修复
18
作者 陈永 陶美风 赵梦雪 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期208-218,共11页
针对现有壁画深度学习修复方法,存在上下文信息关注不足及结果欠佳的问题,提出了一种多层次特征融合与超图卷积的生成对抗修复模型。首先,利用金字塔特征分层对壁画进行多尺度层次特征提取,并采用混合空洞卷积单元扩大多层特征提取感受... 针对现有壁画深度学习修复方法,存在上下文信息关注不足及结果欠佳的问题,提出了一种多层次特征融合与超图卷积的生成对抗修复模型。首先,利用金字塔特征分层对壁画进行多尺度层次特征提取,并采用混合空洞卷积单元扩大多层特征提取感受野,以克服单尺度卷积操作对于壁画特征提取能力不足的问题。然后,提出多分支短链融合层及门控机制融合多分支特征方法,将相邻分支间的特征信息进行融合,使融合后的壁画特征图中既有同分支的特征,又有相邻分支的特征,以提高特征信息的利用率;并引入门控机制对特征进行选择融合,以减少细节信息的丢失。接着,将融合特征通过卷积长短期记忆网络(ConvLSTM)特征注意力方法,增强对壁画上下文信息的关注。最后,设计超图卷积壁画长程特征增强模块,通过在编码器和解码器的跳跃连接之间建立超图卷积层,利用超图卷积捕获编码器的空间特征信息,并将其迁移到解码器中,有助于解码器更好地生成壁画图像,以加强特征的长程依赖关系,并与SN-PatchGAN判别器对抗博弈从而完成修复。通过敦煌壁画数字化修复实验,结果表明:所提方法客观评价优于对比算法,对于破损壁画修复结果更加清晰自然。 展开更多
关键词 壁画修复 多层次特征 多分支短链融合 超图卷积 卷积长短期记忆网络
在线阅读 下载PDF
双分支跨级特征融合的自然场景文本检测 被引量:1
19
作者 刘光辉 张钰敏 +1 位作者 孟月波 占华 《智能系统学报》 CSCD 北大核心 2023年第5期1079-1089,共11页
现有的场景文本检测方法在处理任意形状文本时,由于复杂背景的影响会造成文本区域定位不准确、相邻文本漏检误检的问题,基于此提出一种双分支跨级特征融合的自然场景文本检测方法。首先,以Resnet50为主干网络提取初始特征,设计跨级特征... 现有的场景文本检测方法在处理任意形状文本时,由于复杂背景的影响会造成文本区域定位不准确、相邻文本漏检误检的问题,基于此提出一种双分支跨级特征融合的自然场景文本检测方法。首先,以Resnet50为主干网络提取初始特征,设计跨级特征分布增强模块(cross-level feature distribution enhancement module,CFDEM),增强跨级特征文本信息的交互性,提高特征的表达能力;然后,为自适应地选择过滤非文本或冗余特征,降低误检率和漏检率,提出自适应融合策略(adaptive fusion strategy,AFS),利用双分支结构加强不同维度特征之间的联系,优化融合过程;最后,预测阶段采用可微分二值化的方法来生成文本检测结果。所提方法在ICDAR2015、ICDAR2017、Total-Text、CTW1500数据集上进行消融实验,实验结果表明该方法能准确定位文本区域,克服文本漏检误检影响。 展开更多
关键词 文本检测 任意形状 跨级特征分布增强 自适应融合 分支 空间维度 通道维度 可微分二值化
在线阅读 下载PDF
边缘引导的双分支网络SAR图像相干斑抑制方法
20
作者 朱磊 姚同钰 +3 位作者 车晨洁 姚丽娜 张博 潘杨 《北京航空航天大学学报》 北大核心 2025年第6期1852-1862,共11页
为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边... 为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边缘信息提取模块,增强模型的边缘感知能力;利用基于通道注意力的残差抑斑子网络(CARNet)、基于混合注意力的增强抑斑子网络(MAENet)及基于多分支并行的多尺度特征融合模块(MPMFFB)共同形成双分支抑斑网络,实现在相干斑抑制的同时更好地保护边缘细节。实验结果表明:与SAR-Transformer、HTNet等先进方法相比,所提方法具有更好的相干斑抑制与边缘保持性能;对仿真SAR图像,峰值信噪比、结构相似性、边缘保持指数分别平均提升0.96 dB、2.60%、0.60%;对真实SAR图像,等效视数提升14.12%以上,边缘保持指数平均提升4.52%。 展开更多
关键词 图像去噪 合成孔径雷达图像 相干斑抑制 分支网络 多尺度特征融合
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部