期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于时序卷积网络的轻量级日志异常检测
1
作者 顾兆军 王亚飞 +1 位作者 刘春波 张智凯 《计算机工程与设计》 北大核心 2025年第8期2272-2279,共8页
针对物联网边缘设备计算能力和存储空间有限,现有方法难以直接部署应用。提出一种基于改进时序卷积网络(TCN)的轻量级日志异常检测模型LLAD。日志预处理后提取语义特征并表征单词与日志事件的关系;在异常检测阶段,采用深度可分离卷积操... 针对物联网边缘设备计算能力和存储空间有限,现有方法难以直接部署应用。提出一种基于改进时序卷积网络(TCN)的轻量级日志异常检测模型LLAD。日志预处理后提取语义特征并表征单词与日志事件的关系;在异常检测阶段,采用深度可分离卷积操作实现一维卷积运算,并使用全局平均池化替换全连接层以减少标准TCN的参数数量和计算量。在HDFS和BGL数据集上的实验结果表明,LLAD与基准模型相比,所需内存和FLOP至少减少80%,且检测性能指标F1值有所提升。 展开更多
关键词 边缘设备 日志异常检测 特征提取 语义特征 时序卷积网络 深度可分离卷积 全局平均池化
在线阅读 下载PDF
基于改进图注意力网络的油井产量预测模型 被引量:2
2
作者 张强 彭骨 薛陈斌 《吉林大学学报(理学版)》 CAS 北大核心 2024年第4期933-942,共10页
针对图注意力网络处理噪声和时序数据较弱,并且在堆叠多层后出现梯度爆炸、过平滑等问题,提出一种改进图注意力网络模型.首先,使用Squeeze-and-Excitation模块对样本输入数据的特征信息进行不同程度关注,增强模型处理噪声的能力;其次,... 针对图注意力网络处理噪声和时序数据较弱,并且在堆叠多层后出现梯度爆炸、过平滑等问题,提出一种改进图注意力网络模型.首先,使用Squeeze-and-Excitation模块对样本输入数据的特征信息进行不同程度关注,增强模型处理噪声的能力;其次,使用多头注意力机制,将序列数据中每个序列相对其他序列进行加权求和,提取数据的时序性;再次,将图注意力网络提取的节点特征与节点的度中心性拼接,获取节点的局部特征,并用全局平均池化的方式提取节点的全局特征;最后,将两者进行融合得到节点的最终特征表示,增强模型的表征能力.为验证改进图注意力网络的有效性,将改进图注意力网络模型与LSTM,GRU和GGNN模型进行对比,实验结果表明,该模型预测效果得到有效提升,具有更高的预测精度. 展开更多
关键词 图注意力网络 多头注意力 节点度中心性 全局平均池化
在线阅读 下载PDF
基于改进卷积神经网络的中药饮片图像识别 被引量:9
3
作者 李玥辰 赵晓 +1 位作者 王若男 杨晨 《科学技术与工程》 北大核心 2024年第9期3596-3604,共9页
为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强... 为解决AlexNet网络模型在中药饮片图像识别中存在的识别准确率和鲁棒性不够理想的问题,以常见的50种中药饮片为研究对象,对AlexNet网络模型进行改进优化。首先通过拍摄以及搜索引擎获取中药饮片图像,并对图像进行数据扩充以及细节增强预处理。其次对AlexNet网络模型进行优化改进,通过缩减原网络的卷积核个数和卷积核大小、使用全局平均池化(global average pooling,GAP)替代全连接层以减少网络参数;去除局部响应归一化(local response normalization,LRN)层、引入批量归一化(batch normalization,BN)层和使用Lion优化算法替代随机梯度下降(stochastic gradient descent,SGD)优化算法以提高网络训练速度;使用Mish激活函数替代ReLU激活函数和引入通道注意力机制SENet网络以提高模型的识别精度。实验结果表明,改进后的网络模型相比于AlexNet网络模型,平均识别率提高了6.1%,平均损失率下降了14.4%,网络参数由原来的60 M缩减至1 M,该结果表明在中药饮片数据集上,改进后的网络模型具有更高的识别率和更好的鲁棒性,可为中药饮片图像识别领域的进一步发展提供有力支持。 展开更多
关键词 AlexNet网络 中药饮片 全局平均池化 Lion优化算法 Mish激活函数 SENet网络
在线阅读 下载PDF
一种基于改进卷积神经网络的齿轮故障诊断方法 被引量:4
4
作者 田彪 张周锁 李想 《机械设计》 CSCD 北大核心 2024年第11期1-7,共7页
由于工作环境和复杂工况的影响,齿轮容易损坏,以致造成巨大经济损失和人员伤亡,因此,齿轮故障的早期诊断越来越重要。为了解决齿轮故障早期诊断问题,文中提出了一种基于改进卷积神经网络的齿轮故障诊断方法。该方法基于经典的卷积神经网... 由于工作环境和复杂工况的影响,齿轮容易损坏,以致造成巨大经济损失和人员伤亡,因此,齿轮故障的早期诊断越来越重要。为了解决齿轮故障早期诊断问题,文中提出了一种基于改进卷积神经网络的齿轮故障诊断方法。该方法基于经典的卷积神经网络(Convolution Neural Networks, CNN),引入了全局平均池化层替代全连接层用于提高神经网络的诊断效率,且加入并行模块结构用于提高故障诊断的准确率。使用齿轮故障数据集进行了试验验证,结果表明:提出的神经网络相比CNN能够有效提高齿轮的故障诊断效率和准确率,具有重要的工程应用意义。 展开更多
关键词 卷积神经网络 齿轮 故障诊断 全局平均池化 并行模块
在线阅读 下载PDF
基于Faster R-CNN网络模型的铁路异物侵限检测算法研究 被引量:52
5
作者 徐岩 陶慧青 虎丽丽 《铁道学报》 EI CAS CSCD 北大核心 2020年第5期91-98,共8页
行人和车辆等异物侵入铁路周边限界内的情况严重威胁了行人自身安全及铁路行车安全。针对传统铁路异物检测算法识别精度不高、分类不明确和结果易受外界环境影响等缺点,提出了一种基于Faster R-CNN网络模型的铁路异物侵限检测算法,并对... 行人和车辆等异物侵入铁路周边限界内的情况严重威胁了行人自身安全及铁路行车安全。针对传统铁路异物检测算法识别精度不高、分类不明确和结果易受外界环境影响等缺点,提出了一种基于Faster R-CNN网络模型的铁路异物侵限检测算法,并对该模型做适应性改进以满足铁路异物检测的现实需要。提出将全连接层用全局平均池化层替代来减少参数量;通过增加锚点个数来提高对目标区域建议的精确性;引入迁移学习思想训练网络以解决铁路异物侵限数据匮乏问题。在铁路异物侵限视频数据集上进行测试表明,本算法对于人、车及部分动物的综合检测精确度达到了97.81%。 展开更多
关键词 铁路异物检测 卷积神经网络 FASTER R-CNN 迁移学习 全局平均池化
在线阅读 下载PDF
基于改进CNN-SVM和机器视觉的苹果自动分级方法研究
6
作者 张瑞琪 杨宁 张一枫 《食品与机械》 北大核心 2025年第9期75-81,共7页
[目的]解决现有苹果自动分级方法存在的分级精度差和效率低等问题。[方法]在基于机器视觉的苹果自动分级系统基础上,提出一种结合卷积神经网络、全局平均池化、批量归一化和支持向量机的苹果自动分级方法。通过全局平均池化,降低模型参... [目的]解决现有苹果自动分级方法存在的分级精度差和效率低等问题。[方法]在基于机器视觉的苹果自动分级系统基础上,提出一种结合卷积神经网络、全局平均池化、批量归一化和支持向量机的苹果自动分级方法。通过全局平均池化,降低模型参数量。通过批量归一化技术提高模型的泛化能力。通过支持向量机替换卷积神经网络的Softmax分类器,提高分类的准确性,并进行验证实验。[结果]与常规的苹果分级方法相比,试验方法在苹果自动分级中具有更高的检测准确和效率,分级准确率达到98.50%,分级速度达到209帧/s,满足食品加工自动化要求。[结论]通过优化现有苹果自动分级方法,在一定程度上提高了检测性能。 展开更多
关键词 苹果 自动分级 卷积神经网络 支持向量机 全局平均池化 批量归一化
在线阅读 下载PDF
基于改进卷积神经网络与支持向量机结合的面部表情识别算法 被引量:17
7
作者 乔桂芳 侯守明 刘彦彦 《计算机应用》 CSCD 北大核心 2022年第4期1253-1259,共7页
针对当前卷积神经网络(CNN)利用端层特征进行面部表情识别存在模型结构繁琐、训练参数过多、识别不够理想的问题,提出一种基于改进CNN与支持向量机(SVM)相结合的优化算法。首先,利用连续卷积的思想设计网络模型,以获取更多非线性激活;然... 针对当前卷积神经网络(CNN)利用端层特征进行面部表情识别存在模型结构繁琐、训练参数过多、识别不够理想的问题,提出一种基于改进CNN与支持向量机(SVM)相结合的优化算法。首先,利用连续卷积的思想设计网络模型,以获取更多非线性激活;然后,采用自适应全局平均池化(GAP)层取代传统CNN中的全连接层,以减少网络参数量;最后,用SVM分类器代替传统Softmax函数实现表情识别,以提高模型泛化能力。实验结果表明,所提算法在Fer2013和CK+数据集上分别取得了73.4%和98.06%的识别准确率,与传统LeNet-5算法相比,在Fer2013数据集上提升了2.2个百分点,且该网络模型结构简单、参数量较少,具有良好的鲁棒性。 展开更多
关键词 卷积神经网络 小尺寸卷积核 表情识别 全局平均池化 非线性支持向量机
在线阅读 下载PDF
基于同态加密的卷积神经网络前向传播方法 被引量:7
8
作者 谢四江 许世聪 章乐 《计算机应用与软件》 北大核心 2020年第2期295-300,312,共7页
现如今,利用云技术完成机器学习预测任务变得十分普遍。然而在云端处理数据存在用户隐私数据泄露的风险。利用同态加密特性,使用户数据在加密状态下完成预测任务,并将加密结果返回给用户,这样就可以解决上述的风险问题。根据上述思路,... 现如今,利用云技术完成机器学习预测任务变得十分普遍。然而在云端处理数据存在用户隐私数据泄露的风险。利用同态加密特性,使用户数据在加密状态下完成预测任务,并将加密结果返回给用户,这样就可以解决上述的风险问题。根据上述思路,提出一种加密域下的卷积神经网络前向传播方法。该方法描述了用户加密数据输入到加密预测结果输出的过程。该方法充分结合全局平均池化解决了全连接层参数多、计算缓慢这一问题。实验结果表明,该方法能够大幅度减少模型参数以及加密预测时延,并且保持较好的加密预测准确率。 展开更多
关键词 同态加密 卷积神经网络 前向传播 全局平均池化
在线阅读 下载PDF
基于轻量级卷积神经网络的植物叶片病害识别方法 被引量:24
9
作者 贾鹤鸣 郎春博 姜子超 《计算机应用》 CSCD 北大核心 2021年第6期1812-1819,共8页
针对目前农业信息领域植物病害识别精度较低、实时性较差的问题,提出了一种基于轻量级卷积神经网络(CNN)的植物叶片病害识别方法。在原有网络中引入深度可分离卷积(DSC)和全局平均池化(GAP)方法,分别用来代替标准卷积运算操作并对网络... 针对目前农业信息领域植物病害识别精度较低、实时性较差的问题,提出了一种基于轻量级卷积神经网络(CNN)的植物叶片病害识别方法。在原有网络中引入深度可分离卷积(DSC)和全局平均池化(GAP)方法,分别用来代替标准卷积运算操作并对网络末端的全连接层部分进行替换。同时,批归一化的技巧也被运用到训练网络的过程中,以改善中间层数据分布并提高收敛速度。为全面而可靠地评估所提方法的性能,在公开的植物叶片病害图像数据集Plant Village上进行实验,选取损失函数收敛曲线、测试精度、参数内存需求等指标来验证改进策略的有效性。实验结果表明,改进后的网络具有较高的病害识别精度(99.427%)以及较小的内存空间占用(6.47 MB),可见其与其他基于神经网络的叶片识别技术相比具有优势,工程实用性较强。 展开更多
关键词 卷积神经网络 植物叶片病害 图像分类 深度可分离卷积 全局平均池化
在线阅读 下载PDF
基于改进深度卷积神经网络的苹果病害识别 被引量:23
10
作者 张善文 张晴晴 李萍 《林业工程学报》 CSCD 北大核心 2019年第4期107-112,共6页
传统的深度卷积神经网络(DCNNs)使用3个全连接层将经过多次卷积层和池化层后提取到的特征图映射并连接为一个特征向量,然后利用Softmax分类器进行分类。该模型容易出现过拟合问题,而且由于在全连接层中参数太多,导致训练时间增加和泛化... 传统的深度卷积神经网络(DCNNs)使用3个全连接层将经过多次卷积层和池化层后提取到的特征图映射并连接为一个特征向量,然后利用Softmax分类器进行分类。该模型容易出现过拟合问题,而且由于在全连接层中参数太多,导致训练时间增加和泛化能力下降。针对传统的DCNNs模型在图像识别中出现的问题,提出一种改进的DCNNs模型,并应用于苹果叶部病害识别中。相比传统的DCNNs算法,改进的DCNNs利用一个全局平均池化层替代全连接层,并利用改进的Softmax分类器进行病害类别识别。在苹果病害叶片图像数据库上的实验结果表明,该模型能够克服过拟合问题,提高病害的识别率,大幅度降低模型的训练和识别时间。 展开更多
关键词 苹果病害 图像识别 深度卷积神经网络 全局平均池化
在线阅读 下载PDF
基于PSO-CNN算法的齿轮故障诊断方法 被引量:3
11
作者 谷娜 吴胜利 邢文婷 《科学技术与工程》 北大核心 2024年第26期11246-11252,共7页
齿轮故障振动信号具有非线性和非平稳性的特性,以及样本不均衡问题和运行工况复杂多变的情况,造成齿轮故障特征诊断的准确度和稳定性偏低,因此,通过研究提高样本集质量和改进深度学习模型的综合方法,以此来提高模型的诊断精度。首先采... 齿轮故障振动信号具有非线性和非平稳性的特性,以及样本不均衡问题和运行工况复杂多变的情况,造成齿轮故障特征诊断的准确度和稳定性偏低,因此,通过研究提高样本集质量和改进深度学习模型的综合方法,以此来提高模型的诊断精度。首先采用变分模态分解(variational mode decomposition,VMD)对信号进行处理,提取每个本征模态函数(intrinsic mode function,IMF)分量的能量熵无量纲指标作为样本集,克服样本不均衡和工况变化带来的不利影响。然后,利用粒子群优化(particle swarm optimization,PSO)算法自主优化卷积神经网络(convolutional neural network,CNN)的学习率(PSO-CNN),降低模型出现过拟合问题的可能性,并利用Inception模块的概念,设计一个多分支全局平均池化网络用于特征融合,进一步提高模型的故障诊断精度。最后,通过试验数据对所提方法进行了验证,结果表明,本文方法的故障诊断准确率可达0.99,并于其他方法进行对比,凸显该方法的有效性和稳定性。 展开更多
关键词 VMD能量熵 PSO-CNN 学习率 多分支全局平均池化网络
在线阅读 下载PDF
高分辨率皮肤黑色素瘤图像的两阶段式分割算法 被引量:1
12
作者 贵向泉 张馨月 李立 《计算机工程》 CAS CSCD 北大核心 2023年第11期267-274,共8页
皮肤黑色素瘤切片图像分辨率过大且病理特征表现形式多样,现有很多分割算法结果不精准同时消耗巨大显卡内存。针对该问题,提出一种低显存消耗的两阶段式精细分割算法。该算法第一阶段采用全局分割网络对以ResNet50为骨干的特征金字塔结... 皮肤黑色素瘤切片图像分辨率过大且病理特征表现形式多样,现有很多分割算法结果不精准同时消耗巨大显卡内存。针对该问题,提出一种低显存消耗的两阶段式精细分割算法。该算法第一阶段采用全局分割网络对以ResNet50为骨干的特征金字塔结构进行改进,图像特征提取过程中使用全局金字塔平均池化模块增强图像全局语义信息的提取,并采用多尺度特征融合分支将高层特征图的语义信息融入到低层特征图中,增强低层特征图语义信息的表征能力。第二阶段采用一种全局到局部的精细分割策略,以全局分割结果为基准对图像进行剪裁,得到一个较小的候选区域,将其输入到局部分割网络中,局部分割网络仅处理候选区域内的像素并与全局网络对应层共享图像特征,精细分割结果的同时减少显存的消耗。在经典数据集ISIC2018上的实验结果显示,该算法的准确度和IOU分别达到93.5%和82.1%,相较于对比的经典分割算法精度最高且占用的显卡内存减少了22.8%~36.9%,能有效适用于高分辨率皮肤病灶图像的分割任务。 展开更多
关键词 两阶段式分割 ResNet50 特征金字塔结构 全局金字塔平均池化模块 多尺度特征融合分支
在线阅读 下载PDF
基于迁移学习和改进CNN的葡萄叶部病害检测系统 被引量:41
13
作者 樊湘鹏 许燕 +3 位作者 周建平 李志磊 彭炫 王小荣 《农业工程学报》 EI CAS CSCD 北大核心 2021年第6期151-159,共9页
为建立高效、准确的葡萄叶部病害检测系统,引入迁移学习机制,利用大型公开数据集对VGG16模型预训练,保持模型前端13个层的参数和权重不变,对全连接层和分类层改进后利用新数据集微调训练模型,包括对训练优化器、学习率和中心损失函数平... 为建立高效、准确的葡萄叶部病害检测系统,引入迁移学习机制,利用大型公开数据集对VGG16模型预训练,保持模型前端13个层的参数和权重不变,对全连接层和分类层改进后利用新数据集微调训练模型,包括对训练优化器、学习率和中心损失函数平衡参数的优选试验,最后将模型部署在Android手机端。试验表明,在微调训练阶段选择Adam优化器、初始学习率设为0.001、中心损失函数平衡参数设为0.12时,改进的VGG16模型性能最优,对葡萄6类叶部图像的分类平均准确率为98.02%,单幅图像平均检测耗时为0.327s。与未改进的VGG16模型相比,平均准确率提高了2.82%,平均检测耗时下降了66.8%,权重参数数量减少了83.4%。改进后的模型综合性能优于AlexNet、ResNet50和Inceptionv3等模型。将模型跨平台部署在Android手机端,自然环境下验证的平均准确率为95.67%,平均检测耗时为0.357 s。该研究建立的基于迁移学习和改进卷积神经网络的病害检测系统可实现对葡萄叶部病害的快速、智能诊断,为葡萄病害的及时防控提供依据。 展开更多
关键词 图像识别 病害 葡萄叶 迁移学习 卷积神经网络 全局平均池化 手机识别系统 智能诊断
在线阅读 下载PDF
基于混合式注意力机制的语音识别研究 被引量:10
14
作者 李业良 张二华 唐振民 《计算机应用研究》 CSCD 北大核心 2020年第1期131-134,共4页
为了解决语音识别中基于卷积位置信息的混合式注意力机制无法提取长期有效位置信息的问题,提出了一种捕捉长期有效位置信息的新型混合式注意力机制。首先,对当前时刻生成的注意力得分作卷积来提取多通道特征图,并通过全局平均池化来得... 为了解决语音识别中基于卷积位置信息的混合式注意力机制无法提取长期有效位置信息的问题,提出了一种捕捉长期有效位置信息的新型混合式注意力机制。首先,对当前时刻生成的注意力得分作卷积来提取多通道特征图,并通过全局平均池化来得到恒定维度的特征向量;接着,引入长短期记忆网络(long short-term memory,LSTM)单元作为外部记忆模块,并以生成的特征向量作为输入,生成下一时刻的位置信息向量;最后,结合经典的LAS(listen,attend and spell)模型来验证提出方案的有效性。实验结果表明,该方案能充分考虑过去多个时刻的注意力得分。相对于基于卷积位置信息的LAS模型,该方案在纯净和含噪语音数据集上取得的标签错误率分别减少了1.8%和2.21%。 展开更多
关键词 卷积 注意力机制 全局平均池化 长短期记忆网络 LAS模型
在线阅读 下载PDF
基于改进GoogLeNet的锌渣识别算法 被引量:7
15
作者 张振洲 熊凌 +3 位作者 李克波 陈刚 但斌斌 吴怀宇 《武汉科技大学学报》 CAS 北大核心 2021年第3期182-187,共6页
针对目前热镀锌工艺中捞渣机器人工作效率低、缺乏选择性等问题,提出一种基于深度学习的锌渣识别算法,以提高捞渣生产线无人化水平。首先,在GoogLeNet网络基础上进行改进,并搭建了适用于实际生产环境的锌渣识别模型;其次,利用经验丰富... 针对目前热镀锌工艺中捞渣机器人工作效率低、缺乏选择性等问题,提出一种基于深度学习的锌渣识别算法,以提高捞渣生产线无人化水平。首先,在GoogLeNet网络基础上进行改进,并搭建了适用于实际生产环境的锌渣识别模型;其次,利用经验丰富的工作人员所标注的薄渣和厚渣这两类锌渣图片来建立数据库,完成锌渣分类模型的训练;最后,将工业相机采集到的锌渣图像进行分块处理,标记每张小图的位置,将分割后的小图输入到训练好的模型中完成分类,并得到待捞锌渣的位置。实验结果显示,本文方法在测试集上的识别准确率达到99.1%,高于对比算法,并且针对每张锌渣原始图像的平均识别时间为0.36 s,只有传统GoogLeNet模型的53%,这证明所提出的锌渣识别算法具有较好的工业应用前景。 展开更多
关键词 锌渣识别 捞渣 全局平均池化 深度学习 GoogLeNet 卷积神经网络 图像分块
在线阅读 下载PDF
改进SSD算法的道路小目标检测研究 被引量:16
16
作者 邹慧海 侯进 《计算机工程》 CAS CSCD 北大核心 2022年第5期281-288,共8页
在道路场景中,因小目标分辨率低且特征不明显,传统的目标检测算法难以确认其所属类别和位置信息,导致检测精度低、检测速度慢、漏检率高。提出一种改进SSD的道路小目标检测算法RFG_SSD。在SSD网络结构的主干部分和检测部分之间,通过引... 在道路场景中,因小目标分辨率低且特征不明显,传统的目标检测算法难以确认其所属类别和位置信息,导致检测精度低、检测速度慢、漏检率高。提出一种改进SSD的道路小目标检测算法RFG_SSD。在SSD网络结构的主干部分和检测部分之间,通过引入改进的特征金字塔网络结构,融合浅层和深层感受野的特征信息,以获得小目标语义信息丰富的特征图。将深层特征提取网络ResNet 50作为改进网络的主干特征提取网络,提高整体网络的检测精度。为加快网络运算速度,基于检测层结构,利用全局平均池化层代替全连接层,减少网络参数量。实验结果表明,与SSD、VGG16+SFPN等算法相比,该算法能够有效提高小目标检测性能,且加快检测速度,其在BDD100K数据集上的平均精度和检测速度分别为98.05%和85.56 frame/s,小目标检测个数相较于SSD算法提高3倍多。 展开更多
关键词 小目标检测 SSD算法 ResNet50网络 特征金字塔网络 全局平均池化
在线阅读 下载PDF
改进TCN算法在人体跌倒检测中的应用 被引量:2
17
作者 魏嘉雪 高冠东 滕桂法 《计算机工程与设计》 北大核心 2023年第9期2859-2866,共8页
为提高跌倒检测的准确率,解决传统RNN和CNN训练模型复杂且易产生梯度爆炸现象的问题,提出一种改进的时间卷积网络(TCN)算法。借鉴ResNet恒等映射的思想对残差结构进行改进,将激活函数改进为Leaky ReLU,减少神经元坏死的现象,为避免参数... 为提高跌倒检测的准确率,解决传统RNN和CNN训练模型复杂且易产生梯度爆炸现象的问题,提出一种改进的时间卷积网络(TCN)算法。借鉴ResNet恒等映射的思想对残差结构进行改进,将激活函数改进为Leaky ReLU,减少神经元坏死的现象,为避免参数冗余造成模型过拟合问题,选用全局平均池化层代替全连接层实现分类。实验结果表明,该算法判断准确率达到99.4%,较改进前提高了10.51%,与其它已有算法相比准确率提高了2.68%~3.63%,能够准确检测出跌倒行为,对于及时识别老年人跌倒并报警,预防因发现不及时致残致死,具有较高的实用价值和社会价值。 展开更多
关键词 时间卷积网络 跌倒检测 残差结构 恒等映射 激活函数 全局平均池化 参数冗余
在线阅读 下载PDF
应用GhostNet卷积特征的ECO目标跟踪算法改进 被引量:9
18
作者 刘超军 段喜萍 谢宝文 《激光技术》 CAS CSCD 北大核心 2022年第2期239-247,共9页
为了减少有效卷积算子(ECO)跟踪算法的特征提取网络参数量和计算量,采用了一种基于端侧神经网络(GhostNet)改进的ECO目标跟踪算法。首先,采用GhostNet网络作为主干特征提取网络提取图像浅层与深层的卷积特征,运用全局平均池化对卷积特... 为了减少有效卷积算子(ECO)跟踪算法的特征提取网络参数量和计算量,采用了一种基于端侧神经网络(GhostNet)改进的ECO目标跟踪算法。首先,采用GhostNet网络作为主干特征提取网络提取图像浅层与深层的卷积特征,运用全局平均池化对卷积特征下采样增加特征对图像的表征能力;其次,将卷积特征与手工特征插值后,与当前滤波器在傅里叶域进行卷积计算实现目标定位;最后,采用共轭梯度算法优化响应误差与惩罚项之和的损失函数实现滤波器更新。在上述提出的算法和OTB2015与VOT2018数据集上进行了理论分析和实验验证,取得了目标跟踪的对比实验数据。结果表明,相对于基于ResNet特征提取网络的ECO算法,该算法在实现高精度跟踪时,卷积特征提取过程计算量减少了95.75%,参数量减少了79.69%,跟踪过程速度提升了160%。这些结果为轻量级目标跟踪算法的研究提供了参考。 展开更多
关键词 图像处理 目标跟踪 端侧神经网络 有效卷积算子 全局平均池化 卷积特征
在线阅读 下载PDF
基于优化LeNet-5的近红外图像中的静默活体人脸检测 被引量:9
19
作者 黄俊 张娜娜 章惠 《红外技术》 CSCD 北大核心 2021年第9期845-851,共7页
针对当前交互式活体检测过程繁琐、用户体验性差的问题,提出了一种优化LeNet-5和近红外图像的静默活体检测方法。首先,采用近红外光摄像头构建了一个非活体数据集;其次,通过增大卷积核、增加卷积核数目、引入全局平均池化等方法对LeNet-... 针对当前交互式活体检测过程繁琐、用户体验性差的问题,提出了一种优化LeNet-5和近红外图像的静默活体检测方法。首先,采用近红外光摄像头构建了一个非活体数据集;其次,通过增大卷积核、增加卷积核数目、引入全局平均池化等方法对LeNet-5进行了优化,构建了一个深层卷积神经网络;最后,将近红外人脸图片输入到模型中实现活体静默活体检测。实验结果表明,所设计的模型在活体检测数据集上有较高的识别率,为99.95%,整个静默活体检测系统的运行速度约为18~22帧/s,在实际应用中鲁棒性较高。 展开更多
关键词 LeNet-5 卷积神经网络 全局平均池化 近红外图像 静默活体检测
在线阅读 下载PDF
基于改进CNN的苹果缺陷检测方法研究 被引量:3
20
作者 杜国真 卢明星 +1 位作者 季泽旭 刘继超 《食品与机械》 CSCD 北大核心 2023年第6期155-160,共6页
目的:解决现有苹果缺陷检测方法存在的精度低、效率差等问题。方法:基于水果图像采集系统,提出一种改进的卷积神经网络用于苹果表面缺陷检测;引入深度可分离卷积代换原网络标准卷积,提高特征提取速度;引入Leaky ReLU激活函数代替ReLU激... 目的:解决现有苹果缺陷检测方法存在的精度低、效率差等问题。方法:基于水果图像采集系统,提出一种改进的卷积神经网络用于苹果表面缺陷检测;引入深度可分离卷积代换原网络标准卷积,提高特征提取速度;引入Leaky ReLU激活函数代替ReLU激活函数,提高计算效率和精度;引入全局平均池化替换全连接层,降低网络模型的计算量;并在每层卷积后加入批量归一化层,通过试验与常规方法进行对比分析,验证其优越性。结果:与常规方法相比,所提方法在苹果缺陷检测中具有较高的检测准确率和速度,且模型参数量少,准确率达99.60%,检测速度(每秒帧数)达526,模型参数量为389 072。结论:该苹果缺陷检测方法能有效降低模型参数和检测时间,具有较高的准确率和速度。 展开更多
关键词 缺陷检测 苹果 卷积神经网络 深度可分离卷积 Leaky ReLU激活函数 全局平均池化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部