期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
重症监护病房导尿管相关性泌尿系统感染集束化干预策略的效果研究 被引量:19
1
作者 赵会杰 王力红 +3 位作者 张京利 马文晖 赵霞 韩叙 《中国护理管理》 CSCD 北大核心 2018年第7期948-952,共5页
目的:评价运用多准则决策分析法构建集束化干预策略对导尿管相关性泌尿系统感染(CatheterAssociated Urinary Tract Infection,CAUTI)的预防效果。方法:将2016年7-12月1 955例留置导尿管ICU住院患者作为对照组,进行回顾性分析,将2017年7... 目的:评价运用多准则决策分析法构建集束化干预策略对导尿管相关性泌尿系统感染(CatheterAssociated Urinary Tract Infection,CAUTI)的预防效果。方法:将2016年7-12月1 955例留置导尿管ICU住院患者作为对照组,进行回顾性分析,将2017年7-12月1 922例留置导尿管ICU住院患者作为干预组,运用多准则决策分析法构建集束化干预策略并在临床实施,随机抽查60例干预组留置导尿管患者干预策略执行依从性,比较干预前后CAUTI感染发生率。结果:干预组实施集束化干预策略的执行率>95%(除护士采用评估单提醒医生每日评估留置导尿管的必要性),对照组与干预组CAUTI千日感染率分别为3.32例/1 000导管日和1.48例/1 000导管日,差异有统计学意义(P<0.05)。结论:重症监护病房实施集束化干预策略预防CAUTI能够有效减少病原菌的侵入,降低CAUTI感染发生率。 展开更多
关键词 重症监护病房 导尿管相关性泌尿系统感染 多准则决策分析法 集束化干预策略
在线阅读 下载PDF
Optimal design of automotive body B-pillar using simplified finite element model of body-in-prime combined with an optimization procedure
2
作者 Mehri IZANLOO Abolfazl KHALKHALI 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3939-3955,共17页
Optimization of an automotive body structure faces the difficulty of having too many design variables and a too large design search space. A simplified model of body-in-prime(BIP) can solve this difficulty by reducing... Optimization of an automotive body structure faces the difficulty of having too many design variables and a too large design search space. A simplified model of body-in-prime(BIP) can solve this difficulty by reducing the number of design variables. In this study, to achieve lighter weight and higher stiffness, the simplified model of BIP was developed and combined with an optimization procedure;consequently, optimal designs of automotive body B-pillar were produced. B-pillar was divided into four quarters and each quarter was modelled by one simplified beam. In the optimization procedure, depth, width, and thickness of the simplified beams were considered as the design variables.Weight, bending and torsional stiffness were also considered as objective functions. The optimization procedure is composed of six stages: designing the experiments, calculating grey relational grade, calculating signal-to noise ratio,finding an optimum design using Taguchi grey relational analysis, performing sensitivity analysis using analysis of variance(ANOVA) and performing non-dominated sorting and multi-criteria decision making. The results show that the width of lower B-pillar has the highest effect(about 55%) and the obtained optimum design point could reduce the weight of B-pillar by about 40% without reducing the BIP stiffness by more than 1.47%. 展开更多
关键词 body-in-prime(BIP)model finite element model bending stiffness torsional stiffness B-pillar Taguchi method multi criterion decision-making(MCDM)method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部