期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多子网复合复杂网络模型的多关系社交网络重要节点发现算法 被引量:6
1
作者 宾晟 孙更新 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期378-385,共8页
为提高社交网络中重要节点评估的效率和有效性,根据社交网络中存在多种相互影响的关系的特性,基于复杂网络理论提出了一种适用于多关系社交网络的重要节点发现算法.首先使用多子网复合复杂网络模型建立包含多种关系的复杂网络,然后采用... 为提高社交网络中重要节点评估的效率和有效性,根据社交网络中存在多种相互影响的关系的特性,基于复杂网络理论提出了一种适用于多关系社交网络的重要节点发现算法.首先使用多子网复合复杂网络模型建立包含多种关系的复杂网络,然后采用信号传播方法体现网络中多种关系和节点间的相互影响,以及这些影响的传递性,最后利用矩阵迭代方法模拟信号传播过程,定量分析网络中各节点的重要度.该算法综合了社交网络中节点的全局和局部重要性,考虑了各节点重要度的相互影响,在豆瓣网上的实验结果表明,与传统社交网络重要节点发现算法相比,该算法在迭代次数、涵盖率等指标上都有较大改善,有助于提高社交网络中舆情分析、社团结构发现、信息传播等工作的效率和准确性. 展开更多
关键词 复杂网络 信号传播 节点重要性 多关系社交网络 多子网复合复杂网络模型
在线阅读 下载PDF
多关系社交网络中社团结构发现算法 被引量:7
2
作者 江淼淼 孙更新 宾晟 《计算机科学与探索》 CSCD 北大核心 2019年第7期1134-1144,共11页
社交网络的节点之间存在着多种关系,这些关系共同决定了网络中节点的社团结构划分。为了准确地发现多关系社交网络中的社团结构,通过研究信息在多子网复合复杂网络模型上的传播过程,提出了一种多关系网络中的社团结构发现算法。该算法... 社交网络的节点之间存在着多种关系,这些关系共同决定了网络中节点的社团结构划分。为了准确地发现多关系社交网络中的社团结构,通过研究信息在多子网复合复杂网络模型上的传播过程,提出了一种多关系网络中的社团结构发现算法。该算法基于多子网复合复杂网络模型建立的多关系社交网络,利用信息在多关系社交网络中的传播过程,将网络中的节点转化成能够被聚类算法处理的向量形式,进而采用聚类算法完成多关系社交网络中的社团结构划分。该算法综合考虑了网络中多种关系的相互作用以及异质节点间的相互影响,得到的传播信息量矩阵表示了各节点在整个网络中的影响力,并将影响力相似的节点划分到同一个社团结构中。实验结果显示,与传统社团结构发现算法相比,该算法不仅在准确度上有所提高,还能将异质节点划分到一个社团中,可以根据用户不同需求挖掘出多关系社交网络中的隐藏信息。 展开更多
关键词 复杂网络 社团结构发现 信息传播 多关系社交网络 多子网复合复杂网络模型
在线阅读 下载PDF
基于MRLT模型多关系社交网络影响力最大化研究 被引量:3
3
作者 赵玉芳 孙更新 宾晟 《计算机应用研究》 CSCD 北大核心 2020年第9期2679-2683,共5页
社交网络影响力最大化问题是基于特定的传播模型,在网络中寻找一组初始传播节点集合,通过其产生最终传播影响范围最大的一种最优化问题。已有的相关研究大多只是针对单关系社交网络,即在社交网络中只存在一种关系,但在现实中,社交网络... 社交网络影响力最大化问题是基于特定的传播模型,在网络中寻找一组初始传播节点集合,通过其产生最终传播影响范围最大的一种最优化问题。已有的相关研究大多只是针对单关系社交网络,即在社交网络中只存在一种关系,但在现实中,社交网络的用户之间往往存在着多种关系,并且这多种关系共同影响着网络信息传播及其最终影响范围。在线性阈值模型的基础上,结合网络节点间存在的多种关系,提出MRLT传播模型来建模节点间的影响力传播过程,在此基础上提出基于反向可达集的MR-RRset算法,解决了传统影响力最大化问题研究过程中由于使用贪心算法所导致的计算性能较低的问题。最后通过在真实数据集上的实验对比,表明所提方法具有更好的影响力传播范围及较大的计算性能提升。 展开更多
关键词 社交网络 影响力最大化 传播模型 多关系社交网络
在线阅读 下载PDF
基于多种社交关系的概率矩阵分解推荐算法
4
作者 公翠娟 宾晟 孙更新 《复杂系统与复杂性科学》 EI CSCD 北大核心 2021年第1期1-7,共7页
随着社交网络的发展,社会化推荐算法得到普遍应用,现有的推荐算法往往只是将一种社交关系引入到推荐系统,但在现实社交网络中用户之间往往存在多种社交关系。基于多子网复合复杂网络模型,利用共享用户特征矩阵,提出了基于多关系社交网... 随着社交网络的发展,社会化推荐算法得到普遍应用,现有的推荐算法往往只是将一种社交关系引入到推荐系统,但在现实社交网络中用户之间往往存在多种社交关系。基于多子网复合复杂网络模型,利用共享用户特征矩阵,提出了基于多关系社交网络的矩阵分解推荐算法。通过在Epinions数据集上的实验结果分析,准确率评价指标MAE、RMSE和NMAE分别提高了34%、27%和7%,由此可以证明,多关系社交网络的矩阵分解推荐算法能有效提高推荐准确率。 展开更多
关键词 多关系社交网络 矩阵分解 推荐算法 多子网复合复杂网络
在线阅读 下载PDF
基于多子网复合复杂网络模型的物质扩散推荐算法 被引量:1
5
作者 周双 宾晟 +1 位作者 邵峰晶 孙更新 《复杂系统与复杂性科学》 EI CSCD 2018年第4期77-84,共8页
融合社交网络的社会化推荐算法是目前推荐系统中普遍采用的方法。在现实的社交网络中,用户间存在多种关系,而每种关系对于推荐的影响是不同的,因此在推荐中单纯引入某一种社交关系必然影响推荐结果的准确率。本文基于多子网复合复杂网... 融合社交网络的社会化推荐算法是目前推荐系统中普遍采用的方法。在现实的社交网络中,用户间存在多种关系,而每种关系对于推荐的影响是不同的,因此在推荐中单纯引入某一种社交关系必然影响推荐结果的准确率。本文基于多子网复合复杂网络模型,通过在用户-商品二部图上加载多关系社交网络,构建多关系复合网,提出了基于多关系复合网的物质扩散推荐算法。在真实的数据集Epinions和FilmTrust上的实验结果表明,加入两种社交关系的推荐算法比加入一种社交关系的推荐算法及传统的物质扩散算法在推荐准确率方面有显著提高。 展开更多
关键词 多子网复合复杂网络 物质扩散算法 多关系社交网络 推荐算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部