期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化概率神经网络和红外多光谱融合的大气层外空间弹道目标识别 被引量:12
1
作者 张国亮 杨春玲 王暕来 《电子与信息学报》 EI CSCD 北大核心 2014年第4期896-903,共8页
针对大气层外空间弹道目标难识别的问题,该文利用红外多光谱数据融合的思想,提出一种基于粒子群优化概率神经网络(PNN)的大气层外空间弹道目标识别方法。该方法首先通过一种新的多色测温方法提取出弹道目标的温度变化率和有效辐射面积... 针对大气层外空间弹道目标难识别的问题,该文利用红外多光谱数据融合的思想,提出一种基于粒子群优化概率神经网络(PNN)的大气层外空间弹道目标识别方法。该方法首先通过一种新的多色测温方法提取出弹道目标的温度变化率和有效辐射面积两类动态特征,然后利用高斯粒子群优化(GPSO)方法对PNN的平滑因子进行优化,最后利用优化的PNN完成4类典型空间目标的识别。该方法融合了多光谱信息并提取出了多个动态特征,具有较强的鲁棒性。另外,该方法充分利用了概率神经网络的较高的稳定性和样本容错能力。仿真实验给出了4类典型空间弹道目标的多光谱红外辐射强度序列数据,并进行了目标识别研究。仿真测试结果表明,提出的优化PNN网络对多个弹道目标具有良好的识别能力。 展开更多
关键词 目标识别 弹道目标 多光谱红外数据融合 粒子群优化 概率神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部