期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度高斯过程的多元类别数据分布估计
1
作者 刘姝君 李艳婷 《计算机工程》 CAS CSCD 北大核心 2019年第2期160-166,共7页
多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小... 多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小样本多元类别数据分布估计的多元类别深度隐高斯过程模型,并结合蒙特卡洛采样的变分推断方法对模型进行参数优化。实验结果表明,与CLGP模型相比,该模型分布估计精确度有所提升。 展开更多
关键词 多元类别数据 生成式模型 深度高斯过程 无监督学习 变分推断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部