期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度高斯过程的多元类别数据分布估计
1
作者
刘姝君
李艳婷
《计算机工程》
CAS
CSCD
北大核心
2019年第2期160-166,共7页
多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小...
多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小样本多元类别数据分布估计的多元类别深度隐高斯过程模型,并结合蒙特卡洛采样的变分推断方法对模型进行参数优化。实验结果表明,与CLGP模型相比,该模型分布估计精确度有所提升。
展开更多
关键词
多元类别数据
生成式模型
深度高斯过程
无监督学习
变分推断
在线阅读
下载PDF
职称材料
题名
基于深度高斯过程的多元类别数据分布估计
1
作者
刘姝君
李艳婷
机构
上海交通大学机械与动力工程学院
出处
《计算机工程》
CAS
CSCD
北大核心
2019年第2期160-166,共7页
基金
国家自然科学基金面上项目"多元复杂时空数据建模与监控方法研究"(71672109)
文摘
多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小样本多元类别数据分布估计的多元类别深度隐高斯过程模型,并结合蒙特卡洛采样的变分推断方法对模型进行参数优化。实验结果表明,与CLGP模型相比,该模型分布估计精确度有所提升。
关键词
多元类别数据
生成式模型
深度高斯过程
无监督学习
变分推断
Keywords
multivariate categorical data
generative model
Deep Gaussian Process(DGP)
unsupervised learning
variational inference
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度高斯过程的多元类别数据分布估计
刘姝君
李艳婷
《计算机工程》
CAS
CSCD
北大核心
2019
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部