期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多元混沌时间序列的因子回声状态网络预测模型 被引量:21
1
作者 许美玲 韩敏 《自动化学报》 EI CSCD 北大核心 2015年第5期1042-1046,共5页
针对采用回声状态网络预测多元混沌时间序列时存在的病态解问题,本文建立了因子回声状态网络模型,通过因子分析(Factor analysis,FA)方法提取高维储备池状态矩阵的公因子,去除冗余和噪声成分.利用降维后的因子变量与期望输出之间的线性... 针对采用回声状态网络预测多元混沌时间序列时存在的病态解问题,本文建立了因子回声状态网络模型,通过因子分析(Factor analysis,FA)方法提取高维储备池状态矩阵的公因子,去除冗余和噪声成分.利用降维后的因子变量与期望输出之间的线性回归关系,求解网络未知参数.基于Lorenz序列和大连月平均气温–降雨量的仿真实验验证了本文所提模型的有效性. 展开更多
关键词 多元混沌时间序列 预测 回声状态网络 因子分析
在线阅读 下载PDF
基于加权极端学习机的瓦斯涌出量预测模型 被引量:2
2
作者 谢国民 谢鸿 +1 位作者 付华 闫孝姮 《控制工程》 CSCD 北大核心 2018年第3期459-463,共5页
为了能够更加准确地预测瓦斯涌出量,提出一种多元混沌时间序列的加权极端学习机瓦斯涌出量预测模型。首先对瓦斯涌出量监测数据构成的多元时间序列进行相空间重构,采用信息熵方法选取最佳延迟时间和嵌入维数:然后根据相空间中输入数... 为了能够更加准确地预测瓦斯涌出量,提出一种多元混沌时间序列的加权极端学习机瓦斯涌出量预测模型。首先对瓦斯涌出量监测数据构成的多元时间序列进行相空间重构,采用信息熵方法选取最佳延迟时间和嵌入维数:然后根据相空间中输入数据对预测误差的影响施加不同的权重,并结合核极端学习机预测模型构造出加权极端学习机模型。通过仿真试验表明,提出的预测模型行之有效,与同类其他模型相比,具有更高的预测精度和更好的稳定性。 展开更多
关键词 多元混沌时间序列 加权极端学习机(WELM) 瓦斯涌出量 预测分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部