期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多尺度特征融合与双注意力机制的多元时间序列预测 被引量:5
1
作者 韩璐 霍纬纲 +1 位作者 张永会 刘涛 《计算机工程》 CAS CSCD 北大核心 2023年第9期99-108,共10页
多元时间序列的各子序列包含不同时间跨度的多尺度特征,现有时间序列预测模型不能有效地捕获多尺度特征以及评估其重要程度。提出一种基于多尺度时序特征融合与双注意力机制的多元时间序列预测网络FFANet,有效融合多尺度特征并关注其中... 多元时间序列的各子序列包含不同时间跨度的多尺度特征,现有时间序列预测模型不能有效地捕获多尺度特征以及评估其重要程度。提出一种基于多尺度时序特征融合与双注意力机制的多元时间序列预测网络FFANet,有效融合多尺度特征并关注其中重要部分。通过多尺度时序特征融合模块中并行的时序膨胀卷积层,使模型具有多种感受域,从而提取时序数据在不同尺度上的特征,并根据重要性对其进行自适应融合。利用双注意力模块对融合的时序特征进行重新标定,通过分配时序和通道注意力权重并加权至对应的时序特征,使FFANet聚焦对预测有重要贡献的特征。实验结果表明,相比AR、VARMLP、RNN-GRU、LSTNet-skip、TPA-LSTM、MTGNN和AttnAR时间序列预测模型,FFANet在Traffic、Solar Energy和Electricity数据集上的RRSE预测误差分别平均降低0.1523、0.1200、0.0743、0.0354、0.0215、0.0121、0.0200。 展开更多
关键词 多元时间序列预测 卷积神经网络 多尺度特征 特征融合 注意力机制
在线阅读 下载PDF
基于优化时谱图神经网络的电力系统多元混沌时间序列预测 被引量:1
2
作者 卢英东 韦笃取 《振动与冲击》 EI CSCD 北大核心 2023年第11期156-162,共7页
电力系统是强耦合、多变量系统,对其多元混沌时间序列预测是当前研究难点。提出了一种基于优化的时谱图神经网络,用于电力系统的混沌预测。利用潜在相关层挖掘多元时间序列之间的相关性,通过序列转换单元将时间序列转换为频域信号并学... 电力系统是强耦合、多变量系统,对其多元混沌时间序列预测是当前研究难点。提出了一种基于优化的时谱图神经网络,用于电力系统的混沌预测。利用潜在相关层挖掘多元时间序列之间的相关性,通过序列转换单元将时间序列转换为频域信号并学习其特征,结合多种算法优化模型实现更好的预测效果。试验表明经优化后的时谱图神经网络不仅能对电力系统的多状态变量进行混沌预测,而且比其他参考模型具有更高的预测精度和稳定性。 展开更多
关键词 神经网络 电力系统 混沌 多元时间序列预测 优化算法
在线阅读 下载PDF
基于不确定性的多元时间序列分类算法研究 被引量:1
3
作者 张旭 张亮 +1 位作者 金博 张红哲 《自动化学报》 EI CAS CSCD 北大核心 2023年第4期790-804,共15页
多元时间序列(Multivariate time series,MTS)分类是许多领域中的重要问题,准确的分类结果可以有效地帮助决策.当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系,并且无法评估分类结果的可信度,这会导致... 多元时间序列(Multivariate time series,MTS)分类是许多领域中的重要问题,准确的分类结果可以有效地帮助决策.当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系,并且无法评估分类结果的可信度,这会导致模型性能受限,以及缺乏具备统计意义的可靠性解释.本文提出了一种基于不确定性的多元时间序列分类算法,变分贝叶斯共享图神经网络,即VBSGNN(Variational Bayes shared graph neural network).首先通过图神经网络(Graph neural network,GNN)提取多元变量之间的交互特征,然后利用贝叶斯神经网络(Bayesian neural network,BNN)为预测过程引入了不确定性.最后在10个公开MTS数据集上进行了算法实验,并与当前提出的7类算法进行了比较,结果表明VBSGNN可有效学习多元变量之间的交互关系,提升了分类效果,并使得模型具备一定的可靠性评估能力. 展开更多
关键词 多元时间序列预测 图神经网络 不确定性 随机变分推断 贝叶斯神经网络
在线阅读 下载PDF
证券业行政监管的股价风险预测与监控 被引量:1
4
作者 陈成 丁皖婧 《统计与决策》 CSSCI 北大核心 2019年第5期159-163,共5页
文章利用VAR模型对我国股票价格指数做出预测,结果显示,VAR模型对当前下一期预测结果比较准确,而对多步预测的结果不太理想。详细分析了Granger因果效应和相应的脉冲响应函数,并讨论了VAR模型适用范围,引出可以对某投资组合做预测评价,... 文章利用VAR模型对我国股票价格指数做出预测,结果显示,VAR模型对当前下一期预测结果比较准确,而对多步预测的结果不太理想。详细分析了Granger因果效应和相应的脉冲响应函数,并讨论了VAR模型适用范围,引出可以对某投资组合做预测评价,使得证券监督管理机构有效地监督股票市场的风险,并判断其投资行为存在异常情况,为投资者提供正确的股票市场预估信息。 展开更多
关键词 证券业行政监管 VAR 多元时间序列预测 Granger投资组合
在线阅读 下载PDF
基于MI-Granger-NARX融合模型的铁路网规模测算方法 被引量:3
5
作者 钱名军 李引珍 +1 位作者 何瑞春 曾海军 《铁道学报》 EI CAS CSCD 北大核心 2021年第1期28-38,共11页
铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量... 铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量等12项影响铁路网规模的指标进行互信息计算。接着,运用Granger因果检验对初选指标进一步筛选,获得7项最具解释力的指标。然后,利用NARX良好的学习记忆与延迟反馈功能构建测算模型,以筛选所得7项指标作为自变量输入、铁路网里程序列作为因变量自回归输入测算铁路网里程。最后,将本模型与传统BP、NAR和单一NARX等神经网络模型的测算结果进行验证、对比。结果表明本模型解释能力更强、泛化能力更好和结果精度更高。 展开更多
关键词 铁路网规模 互信息 GRANGER因果关系检验 NARX 多元时间序列预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部