在过程监控中,使用现代工业系统中的变量进行准确有效的监控诊断仍然是一个具有挑战性的任务.本文以多元指数加权移动平均(MEWMA)策略结合一种有监督分类器(“one plus epsilon”,简称OPE分类器),提出OPE-MEWMA控制图.在考虑不同模型、...在过程监控中,使用现代工业系统中的变量进行准确有效的监控诊断仍然是一个具有挑战性的任务.本文以多元指数加权移动平均(MEWMA)策略结合一种有监督分类器(“one plus epsilon”,简称OPE分类器),提出OPE-MEWMA控制图.在考虑不同模型、偏移模式和偏移大小的情况下,探究了控制图对均值偏移的检测能力,通过比较平均运行长度等多个指标衡量控制图的性能表现.仿真结果表明,所开发的OPE-MEWMA控制图能够快速检测到均值偏移,灵敏度较高.展开更多
传统Shewhart-p控制图只对单一属性的不合格品率进行监控,在过程发生偏移时有一定的滞后性。为提高不合格品率控制图的精度,提出一种多元指数加权移动平均不合格品率(multivariate exponentially weighted moving average p, MEWMA-p)...传统Shewhart-p控制图只对单一属性的不合格品率进行监控,在过程发生偏移时有一定的滞后性。为提高不合格品率控制图的精度,提出一种多元指数加权移动平均不合格品率(multivariate exponentially weighted moving average p, MEWMA-p)控制图。该控制图将多个属性的不合格品率应用于多元指数加权移动平均控制图,可同时对多个属性进行监控,并且对于小范围的偏移更加敏感。对比分析同等偏移程度下指数加权移动平均不合格品率(exponentially weighted moving average p, EWMA-p)控制图与MEWMA-p控制图的平均运行长度(average run length,ARL)结果,并通过模拟仿真说明该方法的有效性。展开更多
文摘在过程监控中,使用现代工业系统中的变量进行准确有效的监控诊断仍然是一个具有挑战性的任务.本文以多元指数加权移动平均(MEWMA)策略结合一种有监督分类器(“one plus epsilon”,简称OPE分类器),提出OPE-MEWMA控制图.在考虑不同模型、偏移模式和偏移大小的情况下,探究了控制图对均值偏移的检测能力,通过比较平均运行长度等多个指标衡量控制图的性能表现.仿真结果表明,所开发的OPE-MEWMA控制图能够快速检测到均值偏移,灵敏度较高.
文摘传统Shewhart-p控制图只对单一属性的不合格品率进行监控,在过程发生偏移时有一定的滞后性。为提高不合格品率控制图的精度,提出一种多元指数加权移动平均不合格品率(multivariate exponentially weighted moving average p, MEWMA-p)控制图。该控制图将多个属性的不合格品率应用于多元指数加权移动平均控制图,可同时对多个属性进行监控,并且对于小范围的偏移更加敏感。对比分析同等偏移程度下指数加权移动平均不合格品率(exponentially weighted moving average p, EWMA-p)控制图与MEWMA-p控制图的平均运行长度(average run length,ARL)结果,并通过模拟仿真说明该方法的有效性。