混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse...混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse optimization,MVO),用于PV-TEG系统在PSC下的最大功率点跟踪(maximum power point tracking,MPPT)。MVO通过平衡全局搜索和局部搜索,有效识别多个LMPPs中唯一的全局最大功率点(global maximum power point,GMPP),避免搜索结果陷入LMPP,以提高发电效率和能源利用率。算例仿真结果表明:基于MVO的MPPT可以在更短的时间内收集到更高的功率,实现功率波动最小。展开更多
针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的...针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。展开更多
为降低电厂燃煤锅炉的NO_(x)排放浓度,提出一种基于改进多元宇宙优化算法(improved multi-verse optimizer algorithm,IMVO)和加权最小二乘支持向量机(weighted least squares support vector machine,WLSSVM)的锅炉NO_(x)排放优化方法...为降低电厂燃煤锅炉的NO_(x)排放浓度,提出一种基于改进多元宇宙优化算法(improved multi-verse optimizer algorithm,IMVO)和加权最小二乘支持向量机(weighted least squares support vector machine,WLSSVM)的锅炉NO_(x)排放优化方法。首先,针对多元宇宙优化算法TDR值下降速度较慢而导致旅行距离增加的问题,提出一种改进的多元宇宙算法;然后,采用IMVO算法对WLSSVM模型参数进行寻优,建立基于IMVO-WLSSVM的NO_(x)排放量预测模型;最后,基于所建预测模型,采用IMVO算法对锅炉运行可调参数进行寻优来降低NO_(x)排放浓度。采用某330 MW机组燃煤锅炉的运行数据对模型进行验证,结果表明:所建预测模型的平均绝对百分比误差为1.09%,相对于其他几种预测模型具有更高的预测精度,改进的多元宇宙优化算法可以使优化后的NO_(x)排放浓度更低,具有更好的寻优效果。展开更多
文摘混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse optimization,MVO),用于PV-TEG系统在PSC下的最大功率点跟踪(maximum power point tracking,MPPT)。MVO通过平衡全局搜索和局部搜索,有效识别多个LMPPs中唯一的全局最大功率点(global maximum power point,GMPP),避免搜索结果陷入LMPP,以提高发电效率和能源利用率。算例仿真结果表明:基于MVO的MPPT可以在更短的时间内收集到更高的功率,实现功率波动最小。
文摘针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。
文摘为降低电厂燃煤锅炉的NO_(x)排放浓度,提出一种基于改进多元宇宙优化算法(improved multi-verse optimizer algorithm,IMVO)和加权最小二乘支持向量机(weighted least squares support vector machine,WLSSVM)的锅炉NO_(x)排放优化方法。首先,针对多元宇宙优化算法TDR值下降速度较慢而导致旅行距离增加的问题,提出一种改进的多元宇宙算法;然后,采用IMVO算法对WLSSVM模型参数进行寻优,建立基于IMVO-WLSSVM的NO_(x)排放量预测模型;最后,基于所建预测模型,采用IMVO算法对锅炉运行可调参数进行寻优来降低NO_(x)排放浓度。采用某330 MW机组燃煤锅炉的运行数据对模型进行验证,结果表明:所建预测模型的平均绝对百分比误差为1.09%,相对于其他几种预测模型具有更高的预测精度,改进的多元宇宙优化算法可以使优化后的NO_(x)排放浓度更低,具有更好的寻优效果。