期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
1
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多元多尺度模糊熵 人工鱼群算法优化的核极限学习机 t分布随机邻域嵌入 特征提取 多粗粒化处理 多通道信号处理 故障分类识别
在线阅读 下载PDF
基于多元多尺度排列模糊熵的滚动轴承故障特征提取方法
2
作者 吕明辰 袁强 +2 位作者 周瑞平 刘虹 梁崇琨 《轴承》 北大核心 2025年第6期97-103,共7页
针对滚动轴承振动信号非线性、非周期性和高背景噪声的特点,提出了基于多元多尺度排列模糊熵(MvMPFE)的滚动轴承故障特征提取方法。该方法利用熵值计算在分析时间序列数据上的优势,结合多尺度模糊熵(MFE)的高计算精度和多尺度排列熵(MPE... 针对滚动轴承振动信号非线性、非周期性和高背景噪声的特点,提出了基于多元多尺度排列模糊熵(MvMPFE)的滚动轴承故障特征提取方法。该方法利用熵值计算在分析时间序列数据上的优势,结合多尺度模糊熵(MFE)的高计算精度和多尺度排列熵(MPE)的高抗噪能力,建立多尺度排列模糊熵(MPFE)故障特征提取模型,解决了熵值计算不稳定的问题,并在MPFE基础上引入多元粗粒形式,提出了MvMPFE的故障特征提取方法,解决了故障特征参数在计算过程中信息丢失的问题,增强了对故障信息的敏感度,从而更加全面和准确地提取滚动轴承故障特征。在凯斯西储大学轴承数据集及东南大学轴承数据集上的验证结果表明,基于MvMPFE的滚动轴承故障特征提取方法有良好的故障特征提取能力,能够全面和准确地识别轴承状态。 展开更多
关键词 滚动轴承 故障诊断 特征提取 信号处理 多元多尺度排列模糊
在线阅读 下载PDF
基于MMFE和可拓k-medoids聚类的轴承性能退化评估 被引量:5
3
作者 赵聪聪 刘玉梅 +2 位作者 赵颖慧 白杨 施继红 《振动与冲击》 EI CSCD 北大核心 2022年第17期123-130,159,共9页
传统轴承性能退化评估常为定性分析,且多以垂向振动信号为对象,忽略了不同方向振动信息之间的相关性。将评价多通道时间序列复杂度的多元多尺度熵引入到轴承运行状态的特征提取,构建多元多尺度模糊熵特征来考虑轴承不同方向振动信息之... 传统轴承性能退化评估常为定性分析,且多以垂向振动信号为对象,忽略了不同方向振动信息之间的相关性。将评价多通道时间序列复杂度的多元多尺度熵引入到轴承运行状态的特征提取,构建多元多尺度模糊熵特征来考虑轴承不同方向振动信息之间的关联性。结合k-medoids算法和可拓学理论建立了轴承性能退化的定量评估模型。通过对轴承正常状态样本进行k-medoids聚类得到聚类中心,根据样本点与聚类中心之间的欧式距离确定可拓集合的边界,进一步利用可拓关联函数构建轴承性能退化评估模型,并采用轴承全寿命疲劳试验进行了验证。试验结果表明,本文所提方法能有效识别轴承的早期性能退化,并能实现对轴承性能退化程度的定量评估。 展开更多
关键词 轴承 性能退化 多元多尺度模糊熵 k-medoids算法 可拓学
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部