期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于多元变分模态分解和混合深度神经网络的短期光伏功率预测 被引量:2
1
作者 郭威 孙胜博 +2 位作者 陶鹏 徐建云 白新雷 《太阳能学报》 EI CAS CSCD 北大核心 2024年第4期489-499,共11页
针对传统分解预测方法忽略太阳辐照度等多维气象因素与光伏功率在时域和频域上的耦合关系以及深度神经网络在训练中出现的特征学习效率低、训练速度慢、过拟合等问题,提出基于多元变分模态分解(MVMD)和混合深度神经网络的短期光伏功率... 针对传统分解预测方法忽略太阳辐照度等多维气象因素与光伏功率在时域和频域上的耦合关系以及深度神经网络在训练中出现的特征学习效率低、训练速度慢、过拟合等问题,提出基于多元变分模态分解(MVMD)和混合深度神经网络的短期光伏功率预测方法。首先,采用MVMD对光伏功率及多维气象序列进行时频同步分析,将其分解为频率对齐的多元本征模态函数,从而降低序列中非线性和波动性的影响。其次,针对多元本征模态函数,分别建立基于混合深度神经网络的预测模型。该模型采用卷积神经网络和双向长短时记忆神经网络来分别提取光伏功率及气象序列的空间相关特征和时间相关特征,并采用注意力机制来增强对重要时间点特征的学习权重。此外,使用残差连接来加快网络的训练速度以及缓解过拟合问题。通过实际工程实验分析,验证了该文方法的优越性。 展开更多
关键词 光伏 预测 神经网络 多元变分模态分解 注意力机制 残差连接
在线阅读 下载PDF
一种改进的自适应多元变分模态分解轴承故障信号特征提取方法 被引量:13
2
作者 时培明 张慧超 +1 位作者 伊思颖 韩东颖 《计量学报》 CSCD 北大核心 2022年第10期1326-1334,共9页
针对实际工程中轴承信号的非线性和非平稳性,提出一种自适应多元变分模态分解算法。多元变分模态的分解效果主要与本征模态数k和惩罚参数α相关,为了解决人为经验参数设置对多元信号分解结果的影响,一种自适应的信号分解算法被提出。具... 针对实际工程中轴承信号的非线性和非平稳性,提出一种自适应多元变分模态分解算法。多元变分模态的分解效果主要与本征模态数k和惩罚参数α相关,为了解决人为经验参数设置对多元信号分解结果的影响,一种自适应的信号分解算法被提出。具体内容如下:首先将混合灰狼算法与多元变分模态分解算法相结合,提出最小模态重叠分量指标,将其作为适应度函数来寻求(k,α)的最优解,按照最优解对多元信号进行分解,提取故障特征。采用仿真信号和实际数据来验证所提方法的有效性和准确性,通过与多元经验模态分解、级联变分模态分解的对比分析,验证该算法在滚动轴承故障特征提取方面的高效性和实用性。 展开更多
关键词 计量学 滚动轴承 故障诊断 多元变分模态分解 混合灰狼算法 模态重叠
在线阅读 下载PDF
基于改进自适应多元变分模态分解的轴承故障诊断方法研究 被引量:10
3
作者 时培明 张慧超 韩东颖 《动力工程学报》 CAS CSCD 北大核心 2022年第2期129-137,共9页
为解决多元变分模态分解(MVMD)经验参数设置对分解结果的影响,提出一种新的自适应多元变分模态分解(AMVMD)方法并将其应用于轴承的故障诊断方面。首先,将最小平均包络熵(MAEE)作为适应度函数,采用灰狼算法(GWO)寻求MVMD参数的最优解,并... 为解决多元变分模态分解(MVMD)经验参数设置对分解结果的影响,提出一种新的自适应多元变分模态分解(AMVMD)方法并将其应用于轴承的故障诊断方面。首先,将最小平均包络熵(MAEE)作为适应度函数,采用灰狼算法(GWO)寻求MVMD参数的最优解,并按照最优参数对原始信号进行分解。然后,计算各本征模态分量(IMF分量)的样本熵和相关系数,选取最佳模态进行信号重构。最后,通过Teager能量算子(TEO)对重构信号进行解调,以增强微弱的瞬态冲击成分并识别特征频率。结果表明:将所提出的AMVMD与TEO相结合可以有效减少信号噪声,提取轴承的故障特征。 展开更多
关键词 多元变分模态分解 灰狼算法 样本熵 TEAGER能量算子
在线阅读 下载PDF
基于多元变分模态分解与改进小波阈值的矿用电缆局放去噪方法
4
作者 曹继元 王彦文 +4 位作者 陈鹏 周暄 朱伟雄 张一赫 王乐 《煤炭学报》 2025年第4期2293-2309,共17页
矿用电缆的绝缘状态对矿井供电系统的稳定运行起着重要作用,局部放电在线监测是电缆绝缘状态监测的重要手段。针对矿用电缆局放信号极易淹没于现场白噪声与周期性窄带干扰中,以及降噪方法适应性普遍不强等问题,提出了基于多元变分模态... 矿用电缆的绝缘状态对矿井供电系统的稳定运行起着重要作用,局部放电在线监测是电缆绝缘状态监测的重要手段。针对矿用电缆局放信号极易淹没于现场白噪声与周期性窄带干扰中,以及降噪方法适应性普遍不强等问题,提出了基于多元变分模态分解与改进小波阈值的局放去噪方法。首先,以最小平均包络熵作为适应度函数,采用麻雀搜索算法实现多元变分模态分解模态数和惩罚因子的自动寻优,从而以分解出最大确定性程度的局放特征信号为目标,准确分解局放含噪信号。其次,计算各本征模态函数的峭度值,区分局放主导分量与噪声主导分量,利用维纳滤波可通过局部方差自适应调节滤波效果的特性,准确提取局放主导分量中的局放特征信号,通过3σ准则归类局放特征信号为粗大误差,反向抑制噪声主导分量中的高斯白噪声与窄带干扰信号,将局放主导分量与噪声主导分量进行重构得到局放重构信号。最后,构建指数衰减型小波阈值函数,该阈值函数在克服硬阈值函数的不连续性与软阈值函数的恒定偏差的基础上,能够快速逼近硬阈值函数,利用新型改进小波阈值算法对局放重构信号进行去噪,得到局放去噪信号。将该方法与常见的几种方法进行比较,结果表明,该方法对仿真局放信号与实测局放信号均具有较好的降噪效果,且算法运行效率表现良好。 展开更多
关键词 局放去噪 多元变分模态分解 小波阈值 峭度 麻雀搜索算法
在线阅读 下载PDF
柴油机多元信号自适应分解方法比较 被引量:2
5
作者 顾程 乔新勇 +1 位作者 靳莹 韩立军 《车用发动机》 北大核心 2020年第6期83-89,共7页
针对单一信号通道反映故障信息不全面、不准确的问题,提出利用多元变分模态分解(MVMD)处理多通道信号提取故障特征,实现故障诊断。首先通过构建多分量调制仿真信号,分析比较MEMD、NAMEMD和MVMD的分解效果,然后利用MVMD对柴油机4个通道... 针对单一信号通道反映故障信息不全面、不准确的问题,提出利用多元变分模态分解(MVMD)处理多通道信号提取故障特征,实现故障诊断。首先通过构建多分量调制仿真信号,分析比较MEMD、NAMEMD和MVMD的分解效果,然后利用MVMD对柴油机4个通道振动信号进行自适应分解,提取每层分量的能量分布作为故障特征,最后利用支持向量机对不同失火故障进行了识别。结果表明,MVMD在抑制模态混叠和分解效率上均优于其他两种算法,且能够有效识别柴油机不同类型失火故障。 展开更多
关键词 多元变分模态分解 振动信号 故障诊断
在线阅读 下载PDF
基于MVMD-MOMEDA的齿轮箱故障诊断方法 被引量:3
6
作者 崔素晓 崔彦平 +2 位作者 武哲 吕志元 张琳琳 《河北科技大学学报》 CAS 北大核心 2023年第6期551-561,共11页
针对齿轮箱振动信号受复杂传递路径、强背景噪声的影响导致早期微弱故障难以诊断的问题,提出了一种基于多元变分模态分解(MVMD)和多点最优最小熵反褶积调整(MOMEDA)的齿轮箱故障诊断方法。首先,利用MVMD将融合后的多通道振动信号进行模... 针对齿轮箱振动信号受复杂传递路径、强背景噪声的影响导致早期微弱故障难以诊断的问题,提出了一种基于多元变分模态分解(MVMD)和多点最优最小熵反褶积调整(MOMEDA)的齿轮箱故障诊断方法。首先,利用MVMD将融合后的多通道振动信号进行模态分解,得到一系列表征信号局部特征的IMF分量;其次,引入峭度值(Ku),选取最佳模态进行信号重构,剔除含噪声分量高的IMF;最后,对重构信号进行MOMEDA特征提取以识别故障频率,从而进行故障诊断。结果表明,所提故障诊断方法可以有效剔除噪声分量的干扰,识别出信号中的故障冲击成分及其倍频进而确定故障类型。MVMD-MOMEDA方法解决了在单一通道问题上无法处理多源信号的缺点以及早期微弱故障特征难以提取等问题,可为故障诊断和多源信号处理提供参考。 展开更多
关键词 数据处理 齿轮箱 多元变分模态分解 多点最优最小熵反褶积调整 特征提取 故障诊断
在线阅读 下载PDF
基于MVMD和瞬时相位的液压管路故障特征提取方法 被引量:4
7
作者 宋旭 魏勤 +2 位作者 鲁玲 陈珊 周昊辰 《光通信技术》 2021年第10期34-39,共6页
为了对液压管路中的故障进行程度和类型的识别与定位,提出多元变分模态分解(MVMD)和瞬时相位特征与主频幅值加权融合的方法,采用分布式光纤布喇格光栅(FBG)监测管路应变,从传感器信号的相位和幅值中提取有效故障特征,并进行了仿真实验... 为了对液压管路中的故障进行程度和类型的识别与定位,提出多元变分模态分解(MVMD)和瞬时相位特征与主频幅值加权融合的方法,采用分布式光纤布喇格光栅(FBG)监测管路应变,从传感器信号的相位和幅值中提取有效故障特征,并进行了仿真实验。仿真结果表明:根据加权融合特征向量可以有效地对管路故障特征进行识别和定位,故障程度识别正确率达98%以上。 展开更多
关键词 液压管路 布式光纤布喇格光栅 相位特征 多元变分模态分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部