期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
尿沉渣图像红白细胞自动分割与识别算法研究
被引量:
1
1
作者
白渊海
《现代电子技术》
2013年第17期118-121,共4页
针对尿沉渣图像中的红白细胞,提出了一种基于组合思想的分割方法,即对图像进行三层处理,将各层的分割结果进行融合,从而通过多信息互补的方法得到完整的分割结果。设计了两级集成SVM分类器对红白细胞进行识别。实验证明,提出的整套算法...
针对尿沉渣图像中的红白细胞,提出了一种基于组合思想的分割方法,即对图像进行三层处理,将各层的分割结果进行融合,从而通过多信息互补的方法得到完整的分割结果。设计了两级集成SVM分类器对红白细胞进行识别。实验证明,提出的整套算法简洁高效,精度高,具有较强的普适性。
展开更多
关键词
尿沉渣
图像分割
多信息互补
SVM
在线阅读
下载PDF
职称材料
题名
尿沉渣图像红白细胞自动分割与识别算法研究
被引量:
1
1
作者
白渊海
机构
西安科技大学通信与信息工程学院
出处
《现代电子技术》
2013年第17期118-121,共4页
文摘
针对尿沉渣图像中的红白细胞,提出了一种基于组合思想的分割方法,即对图像进行三层处理,将各层的分割结果进行融合,从而通过多信息互补的方法得到完整的分割结果。设计了两级集成SVM分类器对红白细胞进行识别。实验证明,提出的整套算法简洁高效,精度高,具有较强的普适性。
关键词
尿沉渣
图像分割
多信息互补
SVM
Keywords
urine sediment
image segmentation
multi-information complementary
SVM
分类号
TN957.52 [电子电信—信号与信息处理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
尿沉渣图像红白细胞自动分割与识别算法研究
白渊海
《现代电子技术》
2013
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部