针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题,提出了一种基于星凸形随机超曲面模型(Starconvex RHM)的多扩展目标多伯努利滤波算法.首先,在有限集统计(Finite set statistics,FISST)理论框架下,采用多伯努利随机有限集(M...针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题,提出了一种基于星凸形随机超曲面模型(Starconvex RHM)的多扩展目标多伯努利滤波算法.首先,在有限集统计(Finite set statistics,FISST)理论框架下,采用多伯努利随机有限集(MBer-RFS)和泊松RFS(Possion-RFS)分别描述多扩展目标的状态和观测,并给出扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器.其次,利用RHM去描述任意星凸形扩展目标的量测源分布,提出了容积卡尔曼高斯混合星凸形多扩展目标多伯努利滤波器.此外,本文给出了一种多扩展目标不规则形状估计性能的评价指标.最后,通过多扩展目标和具有形状突变的多群目标的跟踪仿真实验验证了本文方法的有效性.展开更多
针对单声矢量传感器(Acoustic vector sensor,AVS)脉冲噪声环境下的多声源波达方向(Direction of arrival,DOA)跟踪问题,利用α稳定分布能更好地建模脉冲噪声的性质,提出α稳定分布下的多伯努利DOA跟踪算法。由于α稳定分布不具有有限...针对单声矢量传感器(Acoustic vector sensor,AVS)脉冲噪声环境下的多声源波达方向(Direction of arrival,DOA)跟踪问题,利用α稳定分布能更好地建模脉冲噪声的性质,提出α稳定分布下的多伯努利DOA跟踪算法。由于α稳定分布不具有有限协方差,该算法采用分数低阶距(Fractional Lower Order Moment,FLOM)代替协方差矩阵,对FLOM进行特征分解构造噪声子空间,生成FLOM-MUSIC空间谱函数作为多伯努利滤波器的伪似然函数,并对其指数加权,改善了传统似然函数的发散和平坦问题,使得粒子的重采样更有效。该算法的优点是不需要预先知道声源个数,利用先验信息和当前量测信息可以直接对当前声源进行跟踪。仿真结果表明,该算法能有效跟踪脉冲噪声环境下单一AVS声源的数目和状态。展开更多
在许多多目标跟踪场景中,目标返回的幅度通常强于虚警杂波返回的幅度。通过建立更加准确的包含幅度信息的目标和虚警杂波似然函数,可提高多目标估计精度。该文提出一种基于随机有限集的幅度信息辅助多伯努利滤波(Amplitude Information ...在许多多目标跟踪场景中,目标返回的幅度通常强于虚警杂波返回的幅度。通过建立更加准确的包含幅度信息的目标和虚警杂波似然函数,可提高多目标估计精度。该文提出一种基于随机有限集的幅度信息辅助多伯努利滤波(Amplitude Information Assistant Multi-Bernoulli Filter,AIA-MBer F)算法。该算法通过建立幅度似然函数将幅度信息引入到多伯努利滤波的更新过程中,并给出针对线性和非线性模型的高斯混合(Gaussian Mixture,GM)和序贯蒙特卡洛(Sequential Monte Carlo,SMC)实现方法。仿真结果表明,该滤波算法相比于传统多伯努利滤波(Multi-Bernoulli Filter,MBer F)无论GM还是SMC实现都可获得更加准确稳定的目标数和对应的目标状态估计。展开更多
针对杂波条件下可分辨群目标的状态估计、目标个数与子群个数估计问题,提出了一种基于标签随机有限集(Label random finite set,L-RFS)框架下的可分辨群目标跟踪算法,该算法主要包括两个方面:可分辨多群目标动态建模和多群目标的跟踪估...针对杂波条件下可分辨群目标的状态估计、目标个数与子群个数估计问题,提出了一种基于标签随机有限集(Label random finite set,L-RFS)框架下的可分辨群目标跟踪算法,该算法主要包括两个方面:可分辨多群目标动态建模和多群目标的跟踪估计.本文工作主要包括:1)结合图论中的邻接矩阵对可分辨群目标运动进行动态建模.2)利用基于L-RFS的广义标签多伯努利滤波(Generalizes label multi-Bernoulli,GLMB)算法对目标的状态和个数进行估计,并且通过估计邻接矩阵得到群的结构和个数估计.3)通过个数不同、结构不同的三个子群目标在二维平面分别做线性和非线性运动进行算法验证.仿真分析表明本文算法能够准确估计出群目标中各目标的状态、个数以及子群的个数,并且能获得目标的航迹估计.展开更多
文摘针对复杂不确定性环境下具有不规则形状的多扩展目标跟踪问题,提出了一种基于星凸形随机超曲面模型(Starconvex RHM)的多扩展目标多伯努利滤波算法.首先,在有限集统计(Finite set statistics,FISST)理论框架下,采用多伯努利随机有限集(MBer-RFS)和泊松RFS(Possion-RFS)分别描述多扩展目标的状态和观测,并给出扩展目标势均衡多目标多伯努利(ET-CBMeMBer)滤波器.其次,利用RHM去描述任意星凸形扩展目标的量测源分布,提出了容积卡尔曼高斯混合星凸形多扩展目标多伯努利滤波器.此外,本文给出了一种多扩展目标不规则形状估计性能的评价指标.最后,通过多扩展目标和具有形状突变的多群目标的跟踪仿真实验验证了本文方法的有效性.
文摘针对单声矢量传感器(Acoustic vector sensor,AVS)脉冲噪声环境下的多声源波达方向(Direction of arrival,DOA)跟踪问题,利用α稳定分布能更好地建模脉冲噪声的性质,提出α稳定分布下的多伯努利DOA跟踪算法。由于α稳定分布不具有有限协方差,该算法采用分数低阶距(Fractional Lower Order Moment,FLOM)代替协方差矩阵,对FLOM进行特征分解构造噪声子空间,生成FLOM-MUSIC空间谱函数作为多伯努利滤波器的伪似然函数,并对其指数加权,改善了传统似然函数的发散和平坦问题,使得粒子的重采样更有效。该算法的优点是不需要预先知道声源个数,利用先验信息和当前量测信息可以直接对当前声源进行跟踪。仿真结果表明,该算法能有效跟踪脉冲噪声环境下单一AVS声源的数目和状态。