期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进锚候选框的甚高速区域卷积神经网络的端到端地铁行人检测 被引量:7
1
作者 盛智勇 揭真 +1 位作者 曲洪权 田青 《科学技术与工程》 北大核心 2018年第22期90-96,共7页
在地铁监控场景下的行人检测,具有客流量大,遮挡程度高的特点。针对该场景的行人检测,提出基于深度学习甚高速区域卷积神经网络的端到端头肩检测方案。由于甚高速区域卷积神经网络模型对目标检测具有普适性,针对通过地铁监控摄像头采集... 在地铁监控场景下的行人检测,具有客流量大,遮挡程度高的特点。针对该场景的行人检测,提出基于深度学习甚高速区域卷积神经网络的端到端头肩检测方案。由于甚高速区域卷积神经网络模型对目标检测具有普适性,针对通过地铁监控摄像头采集的真实的客流图像数据,人工标注训练及模型测试数据集进行分析;进而根据头肩特征面积分布较集中,长宽尺度比例可明显分为一类的特性对区域建议网络网络中的锚候选框进行了改进,使其更适应地铁特殊场景中的行人检测。改进后的模型在保证系统检测精度的同时提升了检测实时性,可以精确检测地铁场景下不同姿势的头肩部位;并在不同场景及视角下的检测也取得了较好的效果。 展开更多
关键词 地铁行人检测 深度学习 头肩特征 高速区域卷积神经网络
在线阅读 下载PDF
基于多任务Faster R-CNN车辆假牌套牌的检测方法 被引量:7
2
作者 陈朋 汤一平 +2 位作者 何霞 王辉 袁公萍 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第12期3079-3089,共11页
针对现有车辆假牌套牌各种检测方法存在计算复杂度高、检测精度低、鲁棒性欠缺等问题,提出一种基于多任务的高速区域卷积神经网络(Faster R-CNN)车辆假牌套牌的检测方法。首先利用时空约束得到疑似套牌车辆,接着用Faster R-CNN定位分割... 针对现有车辆假牌套牌各种检测方法存在计算复杂度高、检测精度低、鲁棒性欠缺等问题,提出一种基于多任务的高速区域卷积神经网络(Faster R-CNN)车辆假牌套牌的检测方法。首先利用时空约束得到疑似套牌车辆,接着用Faster R-CNN定位分割出车辆前脸部分图像,然后对疑似套牌车辆的车脸公脸部分(车辆的基本特征)的特征进行比对;在此基础上再对高仿套牌车辆的车脸私脸部分(车检标)的细微特征进行检测比对。这种分层次的、从车辆宏观特征到微观特征的视觉检测方法,具有检测速度快、鲁棒性高、泛化能力强、实施部署方便、检测精度高等优点。实验研究表明,在Vehicle ID数据集和杭州卡口数据集中分别取得了99.39%、99.22%的检测精度。 展开更多
关键词 车辆假牌套牌检测 多任务高速区域卷积神经网络 车辆脸部特征 分层特征比对
在线阅读 下载PDF
基于多任务分类的吸烟行为检测 被引量:14
3
作者 程淑红 马晓菲 +1 位作者 张仕军 张丽 《计量学报》 CSCD 北大核心 2020年第5期538-543,共6页
为了及时检测吸烟行为,准确做出状态判断,提出了一种基于多任务分类的吸烟行为检测算法。该算法融合多任务卷积神经网络、级联回归和残差网络,通过多任务卷积神经网络算法和基于梯度提高学习的回归树方法(RET级联回归)快速定位嘴部感兴... 为了及时检测吸烟行为,准确做出状态判断,提出了一种基于多任务分类的吸烟行为检测算法。该算法融合多任务卷积神经网络、级联回归和残差网络,通过多任务卷积神经网络算法和基于梯度提高学习的回归树方法(RET级联回归)快速定位嘴部感兴趣区域(ROI);在此基础上,采用残差网络对ROI内目标进行检测和状态识别。实验结果表明,该算法可以准确检测到吸烟行为的发生并做出状态判断,准确率可以达到87. 5%。 展开更多
关键词 计量学 吸烟行为检测 多任务分类 卷积神经网络 级联回归 残差网络 感兴趣区域 人脸识别
在线阅读 下载PDF
基于语义分割注意力与可见区域预测的行人检测方法 被引量:4
4
作者 王璐 王帅 +1 位作者 张国峰 徐礼胜 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期1261-1267,共7页
为改善图像中遮挡和小尺寸行人的检测精度,提出一种基于语义分割注意力和可见区域预测的行人检测方法.具体地,在SSD(single shot multi-box detector)目标检测网络的基础上,首先优化SSD的超参数设置,使其更适于行人检测;然后在主干网络... 为改善图像中遮挡和小尺寸行人的检测精度,提出一种基于语义分割注意力和可见区域预测的行人检测方法.具体地,在SSD(single shot multi-box detector)目标检测网络的基础上,首先优化SSD的超参数设置,使其更适于行人检测;然后在主干网络中引入基于语义分割的注意力分支来增强行人检测特征的表达能力;最后提出一种检测预测模块,它不仅能同时预测行人整体和可见区域,还能利用可见区域预测分支所学的特征去引导整体检测特征的学习,提升检测效果.在Caltech行人检测数据集上进行了实验,所提方法的对数平均缺失率为5.5%,与已有方法相比具有一定的优势. 展开更多
关键词 行人检测 卷积神经网络 语义分割注意力 行人可见区域预测 多任务网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部