期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合协同注意力机制与Transformer模型的鱼类异常行为多任务识别
1
作者
张艺爔
胡泽元
+4 位作者
左宇琪
贾松怡
刘吉航
陶红希
于红
《广东海洋大学学报》
北大核心
2025年第1期124-133,共10页
【目的】解决暗光、浑浊和高密度养殖环境下,对于单任务鱼类异常行为识别精确度不高以及相似性鱼类异常行为难以准确识别的问题。【方法】提出一种多任务学习情况下鱼类异常行为及其姿态估计研究框架,命名为PD-DETR。通过Transformer架...
【目的】解决暗光、浑浊和高密度养殖环境下,对于单任务鱼类异常行为识别精确度不高以及相似性鱼类异常行为难以准确识别的问题。【方法】提出一种多任务学习情况下鱼类异常行为及其姿态估计研究框架,命名为PD-DETR。通过Transformer架构实现端到端推理,平衡不同任务的损失权重,优化梯度冲突。通过自注意力编码器和协同注意力(SCSA)特征融合网络(SCSA-FPN),计算单鱼行为与鱼群行为的权重,平衡鱼群行为对个体行为的影响,降低相似性行为特征丢失。设计消融实验和模型对比实验,以证算法的有效性。【结果】PD-DETR在红鳍东方鲀(Takifugu rubripes)异常行为数据集上的识别精确率和平均精度分别达到95.1%和93.6%,较YOLOv11-det提升0.9%和0.3%;游动姿态估计精确率和平均精度分别达到91.2%和90.8%,较RT-DETR相比分别提升3.9%和4.4%;在多任务学习情况下异常识别任务和游动姿态估计任务的平均精度较单任务学习提升1.2%和1.7%。【结论】多任务学习网络PD-DETR实现了暗光、浑浊水质环境中的鱼类异常行为识别与游动姿态分析,有助于提高养殖效率,保障鱼类健康。
展开更多
关键词
鱼类异常行为
姿态估计
多任务
学习
多任务梯度协调
Transformer模型
在线阅读
下载PDF
职称材料
题名
融合协同注意力机制与Transformer模型的鱼类异常行为多任务识别
1
作者
张艺爔
胡泽元
左宇琪
贾松怡
刘吉航
陶红希
于红
机构
大连海洋大学信息工程学院
大连市智慧渔业重点实验室
设施渔业教育部重点实验室(大连海洋大学)
辽宁省海洋信息技术重点实验室
出处
《广东海洋大学学报》
北大核心
2025年第1期124-133,共10页
基金
辽宁省科技计划联合基金(2023-BSBA-001)
辽宁省教育厅重点科研项目(LJKZ0729)
+2 种基金
海洋渔业领域知识图谱构建项目(2023JH26/10200015)
辽宁省教育厅基本科研项目(JYTQN2023132)
设施渔业教育部重点实验室(大连海洋大学)开放课题(202313)。
文摘
【目的】解决暗光、浑浊和高密度养殖环境下,对于单任务鱼类异常行为识别精确度不高以及相似性鱼类异常行为难以准确识别的问题。【方法】提出一种多任务学习情况下鱼类异常行为及其姿态估计研究框架,命名为PD-DETR。通过Transformer架构实现端到端推理,平衡不同任务的损失权重,优化梯度冲突。通过自注意力编码器和协同注意力(SCSA)特征融合网络(SCSA-FPN),计算单鱼行为与鱼群行为的权重,平衡鱼群行为对个体行为的影响,降低相似性行为特征丢失。设计消融实验和模型对比实验,以证算法的有效性。【结果】PD-DETR在红鳍东方鲀(Takifugu rubripes)异常行为数据集上的识别精确率和平均精度分别达到95.1%和93.6%,较YOLOv11-det提升0.9%和0.3%;游动姿态估计精确率和平均精度分别达到91.2%和90.8%,较RT-DETR相比分别提升3.9%和4.4%;在多任务学习情况下异常识别任务和游动姿态估计任务的平均精度较单任务学习提升1.2%和1.7%。【结论】多任务学习网络PD-DETR实现了暗光、浑浊水质环境中的鱼类异常行为识别与游动姿态分析,有助于提高养殖效率,保障鱼类健康。
关键词
鱼类异常行为
姿态估计
多任务
学习
多任务梯度协调
Transformer模型
Keywords
fish abnormal behavior
pose estimation
multi-task learning
multi-task gradient coordination
Transformer model
分类号
S932 [农业科学—渔业资源]
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合协同注意力机制与Transformer模型的鱼类异常行为多任务识别
张艺爔
胡泽元
左宇琪
贾松怡
刘吉航
陶红希
于红
《广东海洋大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部