期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
银瞳:基于自适应语义空间学习的中文金融多任务大模型
1
作者 周宇航 李泽平 +4 位作者 叶广楠 田思雨 倪雨琛 刘响 柴洪峰 《中文信息学报》 北大核心 2025年第8期42-52,共11页
该文提出了一种自适应语义空间学习框架(ASSL),并在金融多任务数据集上训练了“银瞳”金融多任务大语言模型。ASSL框架通过分析数据在语义空间的相似性,实现了LoRA专家与训练数据的自适应选择机制,优化了模型的任务适应性和数据选择效... 该文提出了一种自适应语义空间学习框架(ASSL),并在金融多任务数据集上训练了“银瞳”金融多任务大语言模型。ASSL框架通过分析数据在语义空间的相似性,实现了LoRA专家与训练数据的自适应选择机制,优化了模型的任务适应性和数据选择效率。实验结果表明,该方法能够有效克服任务冲突问题,确保每个专家模型专注于擅长的任务领域,提升了模型的性能和泛化能力。具体来说,在仅使用10%的数据微调的情况下,模型表现出与全量数据微调相似的效果。通过聚类与数据重分布策略,ASSL框架实现了多任务模型在有限数据下的高效训练,为金融领域自然语言处理技术的发展提供了新的思路和方法。 展开更多
关键词 自适应语义空间学习 金融大模型 多任务学习
在线阅读 下载PDF
基于不同机器学习模型的滑坡易发性分析及适应性评估
2
作者 王洁 林诚杰 +3 位作者 梁峰铭 季静静 谈松林 刘宇 《科学技术与工程》 北大核心 2025年第2期513-520,共8页
机器学习模型因其强大的特征提取能力被广泛应用于滑坡易发性评价,在应用中其算法在不断改进。为解决常见机器学习模型中精度不高的问题,将分组卷积神经网络模型(group convolutional neural network,GCNN)引入滑坡易发性评价,并与多种... 机器学习模型因其强大的特征提取能力被广泛应用于滑坡易发性评价,在应用中其算法在不断改进。为解决常见机器学习模型中精度不高的问题,将分组卷积神经网络模型(group convolutional neural network,GCNN)引入滑坡易发性评价,并与多种常见机器学习模型结果进行对比分析,综合评估不同机器学习模型在滑坡易发性评价的适应性。以河北省为研究区,从致灾因子、孕灾环境、承灾体这个3个方面出发,共选取16个影响因子,选择GCNN模型和目前常见的机器学习模型——卷积神经网络模型(convolutional neural network,CNN)、逻辑回归模型(Logistic)、随机森林算法模型(random forest,RF)和支持向量机模型(support vector machine,SVM)构建出相应的易发性评价模型,将研究区划分为4类滑坡易发性区域,并对区划的精确性进行综合评价。研究表明,与其他4种机器学习模型相比,GCNN模型在各混淆矩阵指标下拥有更高评分,更适合进行滑坡易发性区划,得到的滑坡易发区划结果与实际发生滑坡点的一致性较好,划分的滑坡灾害易发区更加准确。 展开更多
关键词 机器学习 分组卷积神经网络模型 适应性评价 滑坡易发性评价
在线阅读 下载PDF
基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
3
作者 曾金灿 何耿生 +3 位作者 李姚旺 杜尔顺 张宁 朱浩骏 《上海交通大学学报》 北大核心 2025年第6期746-757,共12页
电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电... 电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电-碳间的相关关系,以电力历史数据为基础,基于机器学习方法提出一种电力行业短期以电折碳方法,实时估算电力行业短期碳排放情况.该方法使用卷积神经网络进行特征提取,并采用轻量级梯度提升树算法开展基于特征提取值的碳排放测算.此外,为了提升模型的泛化能力和鲁棒性,在模型训练中采用K折交叉验证技术,在模型参数优化过程中采用网格搜索技术.最后,为了验证所提模型的有效性,对比所提模型和其他机器学习模型在同等数据集划分条件下分别基于日度数据集与小时数据集中进行训练的效果.结果表明:所提模型在效果评估和测算值与目标值分布分析中均优于其他模型,能够较好地反映电力行业的短期碳排放情况. 展开更多
关键词 以电折碳 卷积神经网络 轻量级梯度提升算法 碳排放 机器学习 组合模型
在线阅读 下载PDF
基于多任务不确定性损失的电站锅炉关键指标预测
4
作者 王宇飞 李楠 +3 位作者 谢刚 张晓红 聂晓音 周勇 《热力发电》 北大核心 2025年第5期132-139,共8页
随着电站锅炉灵活运行需求的增加,频繁的变负荷运行导致污染物含量和烟气参数大范围波动,对单一污染物或烟气参数等关键指标进行建模已无法满足电厂实际需求,因此需要考虑多种关键指标的耦合性进行协同预测建模。基于燃煤电厂的历史运... 随着电站锅炉灵活运行需求的增加,频繁的变负荷运行导致污染物含量和烟气参数大范围波动,对单一污染物或烟气参数等关键指标进行建模已无法满足电厂实际需求,因此需要考虑多种关键指标的耦合性进行协同预测建模。基于燃煤电厂的历史运行数据,通过核函数映射进行特征提取,构建硬参数共享结构的长短时记忆神经网络进行多任务预测建模,利用不确定性损失的方法优化预测模型。实验结果表明,所提出的预测模型在变负荷工况下表现出较高的预测精度,对于所涉及的关键指标空气预热器出口烟气含氧量、烟气温度、炉膛出口NO_(x)质量浓度的预测,均方根误差分别降低了25.5%、41.8%和4.7%。所提方法能够在变负荷工况下对电站锅炉多个关键指标进行预测,能够辅助电厂实现污染控制和燃烧效率优化,可为电厂智能化运行提供技术支持。 展开更多
关键词 燃煤锅炉 预测模型 LSTM神经网络 多任务学习 不确定性损失
在线阅读 下载PDF
基于多任务学习的机票价格预测模型 被引量:1
5
作者 卢敏 贾玉璇 《计算机工程与设计》 北大核心 2023年第8期2459-2464,共6页
针对现有机票销售模型忽视不同票价等级需求问题,考虑到机票需求的影响,提出一种多任务学习模型预测机票价格。在机票价格预测中引入辅助任务机票需求预测,建立多任务学习网络,通过共享相关任务在日、周、半月、月等水平上的多尺度需求... 针对现有机票销售模型忽视不同票价等级需求问题,考虑到机票需求的影响,提出一种多任务学习模型预测机票价格。在机票价格预测中引入辅助任务机票需求预测,建立多任务学习网络,通过共享相关任务在日、周、半月、月等水平上的多尺度需求特征,分析不同周期需求特征的影响。在六千万条记录的真实数据集上的实验结果表明,较之基准算法,该模型在准确率和F1分数方面提高了将近6%,验证了多任务学习模型的有效性。 展开更多
关键词 机票价格预测 机票需求 多尺度需求特征 多任务学习 卷积神经网络 残差网络 分类器模型
在线阅读 下载PDF
基于自适应高斯混合模型与ResDN的火焰检测算法
6
作者 王文标 时启衡 郝友维 《科学技术与工程》 北大核心 2025年第4期1580-1586,共7页
针对火焰检测算法在复杂场景下误检率高、算法适应性差、效率低等问题,设计一种轻量高效的两阶段视频火焰检测算法。第一阶段采用改进的自适应高斯混合模型(adaptive gaussian mixture model, AGMM)对视频图像序列进行快速背景建模,利... 针对火焰检测算法在复杂场景下误检率高、算法适应性差、效率低等问题,设计一种轻量高效的两阶段视频火焰检测算法。第一阶段采用改进的自适应高斯混合模型(adaptive gaussian mixture model, AGMM)对视频图像序列进行快速背景建模,利用火焰的闪烁和涌动特性,提取出序列中的可疑候选区域。第二阶段使用残差深度归一化卷积神经网络(residual deep normalization and convolutional neural network, ResDN)对可疑候选区域进行判别,并引入简化的残差块替换原有的卷积层进行轻量化设计,实现对火焰的检测与定位。相比于传统分类算法,所设计的两阶段视频火焰检测算法能够有效克服复杂场景下的环境干扰,准确快速地识别火焰,具有更高的检测率和适应性。 展开更多
关键词 火焰检测 自适应高斯混合模型(AGMM) 残差深度归一化卷积神经网络(ResDN) 机器视觉 深度学习
在线阅读 下载PDF
基于自适应多任务卷积神经网络的脑网络分类方法 被引量:10
7
作者 邢新颖 冀俊忠 姚垚 《计算机研究与发展》 EI CSCD 北大核心 2020年第7期1449-1459,共11页
脑网络分类是脑科学研究中的一项重要课题.近年来,基于卷积神经网络的脑网络分类方法已经成为一个前沿热点.然而,目前仍难以对数据维度高、样本量小的脑网络数据进行精准分类.由于不同人群的临床表型与其脑网络差异存在着一定的依存关系... 脑网络分类是脑科学研究中的一项重要课题.近年来,基于卷积神经网络的脑网络分类方法已经成为一个前沿热点.然而,目前仍难以对数据维度高、样本量小的脑网络数据进行精准分类.由于不同人群的临床表型与其脑网络差异存在着一定的依存关系,极有可能为脑网络分类提供辅助信息,故提出一种新的基于自适应多任务卷积神经网络的脑网络分类方法.该方法引入临床表型预测作为辅助任务,通过多任务卷积神经网络的共享表示机制来为脑网络分类提供有用信息;同时为了降低实验成本和人工操作带来的误差,提出了一种新的自适应方法来代替人工调整多任务学习中各个子任务的权重.在ABIDE I(autism brain imaging data exchange I)数据集上的实验结果表明:引入临床表型预测任务的多任务卷积神经网络能够获得更好的脑网络分类结果,而且自适应多任务学习方法能够进一步提升脑网络的分类性能. 展开更多
关键词 脑网络分类 卷积神经网络 多任务学习 临床表型 自适应方法
在线阅读 下载PDF
自适应重加权池化深度多任务学习的表情识别 被引量:7
8
作者 王晓峰 王昆 +1 位作者 刘轩 郝潇 《计算机工程与设计》 北大核心 2022年第4期1111-1120,共10页
为实现表情准确且快速的识别,提出一种自适应重加权池化深度多任务学习(DMTL)的表情识别。设计孪生神经网络,通过自适应重加权模块动态调整缩放概率参数,得到具有不同置信度的类别标签信息。改进自适应池化方法,根据样本及训练过程变化... 为实现表情准确且快速的识别,提出一种自适应重加权池化深度多任务学习(DMTL)的表情识别。设计孪生神经网络,通过自适应重加权模块动态调整缩放概率参数,得到具有不同置信度的类别标签信息。改进自适应池化方法,根据样本及训练过程变化情况选取合适参数,提高特征提取的灵活性。结合类别标签信息和样本局部空间分布信息,利用改进型判别式DMTL进行人脸表情识别。基于CK+、MMI和FER2013数据集对所提方法进行实验论证,实验结果表明,其识别率在3个数据集上的识别率分别是95.2%、84.1%和73.6%,执行时间为0.082 s,均优于其它对比方法。 展开更多
关键词 表情识别 判别式深度多任务学习 孪生神经网络 自适应重加权 自适应池化 局部空间分布
在线阅读 下载PDF
基于状态划分和集成学习的轴承剩余使用寿命预测模型 被引量:2
9
作者 胡志辉 王绪光 +2 位作者 王贡献 张腾 李帅琦 《机电工程》 CAS 北大核心 2024年第8期1423-1430,共8页
针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警... 针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警范围,结合连续触发机制自适应确定DST;然后,采用具有自适应噪声的完全集成经验模态分解(CEEMDAN)对退化阶段信号序列进行了自适应分解;最后,构建了集成学习模型,考虑分量的不同特性进行了多步滚动预测,融合预测结果得到了轴承RUL,采用滚动轴承XJTU-SY公开数据集进行了试验验证。研究结果表明:与基于长短时记忆神经网络(LSTM)、反向传播神经网络(BPNN)的预测方法相比,该方法预测结果的平均绝对误差分别降低了11.7%以及5.6%,相对均方根误差分别降低了12.2%以及10.7%,验证了该方法在轴承RUL预测中的有效性和优越性。 展开更多
关键词 滚动轴承剩余使用寿命 退化起始时间 自适应DST状态划分 集成学习模型 退化特征提取 具有自适应噪声的完全集成经验模态分解 长短时记忆神经网络
在线阅读 下载PDF
基于多任务迭代学习的论辩挖掘方法 被引量:7
10
作者 廖祥文 陈泽泽 +2 位作者 桂林 程学旗 陈国龙 《计算机学报》 EI CSCD 北大核心 2019年第7期1524-1538,共15页
论辩挖掘可分为论点边界的检测、论点类型的识别、论点关系的抽取三个子任务.现有的工作大多数对子任务分别建模研究,忽略了三个子任务之间的关联信息,导致性能低下.另外,还有部分的工作采用流水线模型把三个子任务进行联合建模,由于流... 论辩挖掘可分为论点边界的检测、论点类型的识别、论点关系的抽取三个子任务.现有的工作大多数对子任务分别建模研究,忽略了三个子任务之间的关联信息,导致性能低下.另外,还有部分的工作采用流水线模型把三个子任务进行联合建模,由于流水线模型仍然是独立的看待每个子任务,为每个子任务训练单独的模型,存在错误传播的问题,且在训练过程中产生了冗余信息.因此,本文提出了一种基于多任务迭代学习的论辩挖掘方法.该方法将论辩挖掘三个任务并行地联合在一起学习,首先通过深度卷积神经网络(CNN)和高速神经网络(Highway Network),获得文本字符和词级别的浅层共享参数表示;然后输入双向长短时记忆循环神经网络(Bi-LSTM),利用论辩挖掘三个任务之间的关联信息进行同时训练,不仅可以避免错误传播,而且能够克服冗余信息的产生;最后,联结三个任务的Bi-LSTM网络输出作为下一次迭代的输入,来提高模型的性能.实验采用了德国UKP实验室公开的学生论文数据集,实验结果表明,与目前最好的基准方法对比,该方法的准确率指标提高了2.74%,“ F1 (100%)”和“ F1 (50%)”指标分别提高了1.05%和1.19%,很好地验证了该方法的有效性。 展开更多
关键词 多任务学习 论辩挖掘 迭代模型 深度学习 卷积神经网络
在线阅读 下载PDF
基于遗传神经网的自适应电池荷电态预估模型 被引量:8
11
作者 路志英 庞勇 刘正光 《电源技术》 CAS CSCD 北大核心 2004年第8期504-507,共4页
电池荷电态(SOC)是放电电流、端电压、温度等多种因素的复杂的非线性函数,而且不同类型的电池具有很大的差异,不能建立统一的模型。因此要对其做出精确的预估是一件很困难的事情,需要耗费很多的人力和时间对特定类型的电池进行大量试验... 电池荷电态(SOC)是放电电流、端电压、温度等多种因素的复杂的非线性函数,而且不同类型的电池具有很大的差异,不能建立统一的模型。因此要对其做出精确的预估是一件很困难的事情,需要耗费很多的人力和时间对特定类型的电池进行大量试验然后建模。为克服这些缺点,提出一种基于遗传神经网的自适应SOC预估模型,通过遗传算法对神经网络结构及其学习算法进行优化,在较短的时间内寻找到适合特定类型电池的神经网络模型,大大缩短了人工建模需要的时间,提高了模型对SOC预估的性能。对于三种不同类型电池的数据进行建模的仿真试验结果验证了本方法的有效性。 展开更多
关键词 电池荷电态 放电电流 非线性函数 遗传算法 神经网络 学习算法 自适应电池荷电态预估模型
在线阅读 下载PDF
二元神经网络模型中的Monte Carlo学习算法
12
作者 路明哲 方志良 +2 位作者 刘福来 母国光 战元龄 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1993年第6期441-446,共6页
基于作者以前提出的一种单通道双极光学神经网络结构,利用自适应阈值,本文提出了一个新的Monte Carlo学习算法的判据。这个判据可以使Monte Carlo学习算法进一步改善神经网络的性能。
关键词 MonteCarlo学习算法 二元神经网络模型 判据 自适应阈值 存储容量 容错能力
在线阅读 下载PDF
基于混合优化算法和深度神经网络模型结合的致密砂岩气藏裂缝参数优化 被引量:3
13
作者 罗山贵 赵玉龙 +4 位作者 肖红林 陈伟华 贺戈 张烈辉 杜诚 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期140-151,共12页
水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且... 水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且依靠现场工程师经验和正交实验等传统方法难以获得最佳的裂缝参数设计。为此,建立了一种新的基于混合优化算法和自适应深度神经网络(DNN)结合的致密气藏裂缝参数优化方法。首先,混合优化算法采用遗传算法(GA)和贝叶斯自适应直接搜索(BADS)之间循环迭代的混合策略。在自适应学习过程中,提出了以“最大平均距离点”作为最不确定解,同时辅以最有希望解和少量拉丁超立方采样解共同更新优化过程中的DNN代理模型。随后,将建立的优化方法用于非均质致密砂岩气藏裂缝参数优化。研究结果表明:(1)在标准测试函数和低维裂缝参数优化问题上,GA+BADS混合优化算法表现出了显著优于GA的寻优速度;(2)针对高维裂缝参数优化问题,GA+BADS混合优化算法在约1/2的GA总数值模拟次数下提高了131万元的经济净现值(NPV),收敛速度和寻优精度都明显增加;(3)相比于GA+BADS混合优化算法,在获得相同NPV时,自适应DNN代理加速优化可再减少24.54%的数值模拟运算次数。结论认为,该优化方法显著提升了优化效率,为解决非常规油气藏中水力压裂裂缝参数设计问题提供了一套可行且高效的智能优化方法,将有力促进非常规油气的规模效益开发。 展开更多
关键词 致密气 沙溪庙组 裂缝参数优化 混合优化算法 深度神经网络 自适应学习 代理模型
在线阅读 下载PDF
输出不可量测非线性系统的神经模型参考自适应控制
14
作者 曾成 赵保军 何佩琨 《电子与信息学报》 EI CSCD 北大核心 2003年第5期612-618,共7页
该文针对被控对象输出不可量测的非线性系统,引入一个便于在线辨识的扩展神经网络模型,提出一种基于前馈-反馈结构的神经网络模型参考自适应控制方法。给出了具有全局收敛性的网络训练算法,并分析了控制系统的稳定性。仿真结果表明该控... 该文针对被控对象输出不可量测的非线性系统,引入一个便于在线辨识的扩展神经网络模型,提出一种基于前馈-反馈结构的神经网络模型参考自适应控制方法。给出了具有全局收敛性的网络训练算法,并分析了控制系统的稳定性。仿真结果表明该控制方法是有效的,而且对网络初始权值的选取及被控对象特性参数的扰动都具有良好的鲁棒性。 展开更多
关键词 非线性系统 神经模型 自适应控制 有源噪声控制 神经网络控制 鲁棒性 学习算法
在线阅读 下载PDF
基于多任务学习的人脸属性识别方法 被引量:7
15
作者 李亚 张雨楠 +2 位作者 彭程 杨俊钦 刘淼 《计算机工程》 CAS CSCD 北大核心 2020年第3期229-236,共8页
针对传统深度卷积神经网络模型复杂、识别速度慢的问题,提出一种基于多任务学习的人脸属性识别方法。通过轻量化残差模块构建基础网络,根据属性类之间的关联关系设计共享分支网络,以大幅减少网络参数和计算开销。以多任务学习的方式联... 针对传统深度卷积神经网络模型复杂、识别速度慢的问题,提出一种基于多任务学习的人脸属性识别方法。通过轻量化残差模块构建基础网络,根据属性类之间的关联关系设计共享分支网络,以大幅减少网络参数和计算开销。以多任务学习的方式联合优化各分支网络与基础网络的参数,利用关联属性间的共同特征实现人脸属性识别。采用带权重的交叉熵作为损失函数监督训练网络模型,改善正负样本数不均衡问题。在公开数据集CelebA上的实验结果表明,该方法的识别错误率低至8.45%,空间开销仅2.7 MB,在CPU上每幅图预测时间低至15ms,方便部署在资源有限的移动或便携式设备上,具有实际应用价值。 展开更多
关键词 人脸属性识别 轻量化残差模块 深度卷积神经网络 模型压缩 多任务学习
在线阅读 下载PDF
基于多任务学习的跨语言信息检索方法研究 被引量:11
16
作者 代佳洋 周栋 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第6期69-81,共13页
跨语言信息检索是信息检索领域的重要任务之一。现有的跨语言神经检索方法通常使用单任务学习,单一的特征捕捉模式限制了神经检索模型的性能。为此,本文提出一种基于多任务学习的跨语言检索方法,利用文本分类任务作为辅助任务,使用共享... 跨语言信息检索是信息检索领域的重要任务之一。现有的跨语言神经检索方法通常使用单任务学习,单一的特征捕捉模式限制了神经检索模型的性能。为此,本文提出一种基于多任务学习的跨语言检索方法,利用文本分类任务作为辅助任务,使用共享文本特征提取层同时捕捉2个任务的特征信息,使其学习不同任务的特征模式,然后将特征向量分别输入到神经检索模型和文本分类模型中完成2个任务。另外,文本分类任务引入的外部语料也在一定程度上起到了数据增强的作用,进一步增加了特征信息的层次。在CLEF 2000-2003数据集的4个语言对上进行的实验表明,本方法明显改善了文本特征提取的效果,从而增强了神经检索模型性能,使神经检索模型的MAP值提高0.012~0.188,并使模型收敛速度平均提高了24.3%。 展开更多
关键词 信息检索 多任务学习 跨语言信息检索 神经检索模型 外部语料
在线阅读 下载PDF
基于多尺度多任务卷积神经网络的人群计数 被引量:7
17
作者 曹金梦 倪蓉蓉 杨彪 《计算机应用》 CSCD 北大核心 2019年第1期199-204,共6页
在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;... 在智能监控领域,实现人群计数具有重要价值,针对人群尺度不一、人群密度分布不均及遮挡等问题,提出一种多尺度多任务卷积神经网络(MMCNN)进行人群计数的方法。首先提出一种新颖的自适应人形核生成密度图描述人群信息,消除人群遮挡影响;其次通过构建多尺度卷积神经网络解决人群尺度不一问题,以多任务学习机制同时估计密度图及人群密度等级,解决人群分布不均问题;最后设计一种加权损失函数,提高人群计数准确率。在UCF_CC_50和World Expo'10数据库上进行了评估,验证了自适应人形核的有效性。实验结果表明:所提算法比Sindagi等的方法 (SINDAGI V A,PATEL V M. CNN-based cascaded multi-task learning of high-level prior and density estimation for crowd counting. Proceedings of the 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway,NJ:IEEE,2017:1-6)在UCF_CC_50数据库上平均绝对误差(MAE)数值和均方误差(MSE)数值分别降低约1. 7和45;与Zhang等的方法(ZHANG Y,ZHOU D,CHEN S,et al. Single-image crowd counting via multi-column convolutional neural network. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington,DC:IEEE Computer Society,2016:589-597)相比,在World Expo'10数据库上所提算法的MAE值降低约1. 5,且在真实公共汽车数据库上仅0~3人的计数误差,表明其实用性较强。 展开更多
关键词 人群计数 多尺度 多任务学习 卷积神经网络 自适应人形核 加权损失函数
在线阅读 下载PDF
基于深度学习的智能电网窃电检测混合模型研究 被引量:2
18
作者 廖银玲 李金灿 +2 位作者 王冰 张君 梁耀元 《电信科学》 北大核心 2024年第2期72-82,共11页
针对传统窃电检测模型受维度诅咒、类不平衡等问题,提出一种能有效检测智能电网窃电行为的混合深度学习模型,利用深度学习卷积神经网络(AlexNet)处理维度诅咒问题,显著提升数据处理的准确性;通过自适应增强(Ada Boost)对正常和异常用电... 针对传统窃电检测模型受维度诅咒、类不平衡等问题,提出一种能有效检测智能电网窃电行为的混合深度学习模型,利用深度学习卷积神经网络(AlexNet)处理维度诅咒问题,显著提升数据处理的准确性;通过自适应增强(Ada Boost)对正常和异常用电行为分类,进一步提高分类精度;使用欠采样技术解决类不平衡问题,确保模型在各类数据的均衡性能;利用人工蜂群算法对AdaBoost和AlexNet的超参数进行优化,有效提高整体模型性能。使用真实智能电表数据集评估混合模型的有效性,与同类模型相比,提出的混合深度学习模型在准确率、精确度、召回率、F1分数、马修斯相关系数(MCC)和曲线下面积-接收者操作特征曲线(AUC-ROC)分数上分别达到了88%、86%、84%、85%、78%和91%,不仅提高了用电行为监测的准确性,也为电力系统的智能分析提供了新视角。 展开更多
关键词 深度学习卷积神经网络 自适应增强 深度驱动模型 窃电检测 特征提取
在线阅读 下载PDF
基于RBF的直线电机二维平台无模型自适应迭代学习控制 被引量:2
19
作者 郑鑫鑫 曹荣敏 侯忠生 《控制工程》 CSCD 北大核心 2023年第10期1881-1890,共10页
直线电机二维平台在运行中存在强耦合、负载扰动和实际控制模型无法精确获得等问题,对其跟踪精度影响较大。针对此问题,在利用具有学习功能的无模型自适应迭代学习控制并且不依赖系统精确数学模型的基础上,引入可以任意逼近非线性函数... 直线电机二维平台在运行中存在强耦合、负载扰动和实际控制模型无法精确获得等问题,对其跟踪精度影响较大。针对此问题,在利用具有学习功能的无模型自适应迭代学习控制并且不依赖系统精确数学模型的基础上,引入可以任意逼近非线性函数的径向基函数(radial basis function,RBF)神经网络控制,对系统误差和未知外部干扰进行估计和补偿,进而提升直线电机二维平台的位置跟踪精度。仿真和实验结果表明,加入RBF神经网络后,实现了对期望输出的精度补偿,与无模型自适应迭代学习控制方案相比,跟踪精度和系统鲁棒性都得到了提高,证明了所提方案的准确性和有效性。 展开更多
关键词 直线电机二维平台 模型自适应迭代学习控制 RBF神经网络
在线阅读 下载PDF
基于自适应模糊神经网络的非线性系统模型预测控制 被引量:21
20
作者 周红标 张钰 +2 位作者 柏小颖 刘保连 赵环宇 《化工学报》 EI CAS CSCD 北大核心 2020年第7期3201-3212,共12页
针对非线性动态系统的控制问题,提出了一种基于自适应模糊神经网络(adaptive fuzzy neural network,AFNN)的模型预测控制(model predictive control,MPC)方法。首先,在离线建模阶段,AFNN采用规则自分裂技术产生初始模糊规则,采用改进的... 针对非线性动态系统的控制问题,提出了一种基于自适应模糊神经网络(adaptive fuzzy neural network,AFNN)的模型预测控制(model predictive control,MPC)方法。首先,在离线建模阶段,AFNN采用规则自分裂技术产生初始模糊规则,采用改进的自适应LM学习算法优化网络参数;然后,在实时控制过程,AFNN根据系统输出和预测输出之间的误差调整网络参数,从而为MPC提供一个精确的预测模型;进一步,AFNN-MPC利用带有自适应学习率的梯度下降寻优算法求解优化问题,在线获取非线性控制量,并将其作用到动态系统实施控制。此外,给出了AFNN-MPC的收敛性和稳定性证明,以保证其在实际工程中的成功应用。最后,利用数值仿真和双CSTR过程进行实验验证。结果表明,AFNN-MPC能够取得优越的控制性能。 展开更多
关键词 非线性系统 动态建模 模型预测控制 过程控制 模糊神经网络 自适应学习
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部