为解决综合能源系统(integrated energy system,IES)多元负荷序列间耦合特性紧密复杂、准确预测难度较大的问题,提出一种基于模态分解与多任务学习模型的IES多元负荷短期预测方法。首先,为处理原始负荷序列的强随机性特征,采用多元变分...为解决综合能源系统(integrated energy system,IES)多元负荷序列间耦合特性紧密复杂、准确预测难度较大的问题,提出一种基于模态分解与多任务学习模型的IES多元负荷短期预测方法。首先,为处理原始负荷序列的强随机性特征,采用多元变分模态和样本熵将多元负荷序列同步分解重构出高、中、低3种频段的模态分量;其次,构建基于多头注意力机制的多任务学习混合预测模型动态分配耦合特征,对于复杂度较高的中高频序列,采用单编码器-多解码器结构的多任务Transformer模型充分挖掘负荷波动信息,对于低频序列,基于双向门控循环单元网络提取平稳分量特征。最后,将各分量预测结果叠加得到多元负荷最终预测结果。基于美国亚利桑那州立大学Tempe校区的多元负荷数据进行测试,结果表明:所提方法电、冷、热负荷平均绝对百分比误差分别为0.61%、0.80%及0.83%,相比其他模型具有更高的求解精度和计算效率。展开更多
文摘为解决综合能源系统(integrated energy system,IES)多元负荷序列间耦合特性紧密复杂、准确预测难度较大的问题,提出一种基于模态分解与多任务学习模型的IES多元负荷短期预测方法。首先,为处理原始负荷序列的强随机性特征,采用多元变分模态和样本熵将多元负荷序列同步分解重构出高、中、低3种频段的模态分量;其次,构建基于多头注意力机制的多任务学习混合预测模型动态分配耦合特征,对于复杂度较高的中高频序列,采用单编码器-多解码器结构的多任务Transformer模型充分挖掘负荷波动信息,对于低频序列,基于双向门控循环单元网络提取平稳分量特征。最后,将各分量预测结果叠加得到多元负荷最终预测结果。基于美国亚利桑那州立大学Tempe校区的多元负荷数据进行测试,结果表明:所提方法电、冷、热负荷平均绝对百分比误差分别为0.61%、0.80%及0.83%,相比其他模型具有更高的求解精度和计算效率。