期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种高性能的多任务图像生成RL-GAN模型
1
作者 叶学义 石悦 +2 位作者 韩卓 李文杰 王浩 《电光与控制》 北大核心 2025年第5期47-52,73,共7页
为了将GAN扩展到多任务模式并构建高性能模型,将强化学习(RL)代理与GAN结合,构建多任务图像生成RL-GAN模型,并通过更换RL代理训练算法、设置更合理的AC网络损失函数及替换网络结构三个方面进行优化,旨在提升模型性能。实验结果显示,在... 为了将GAN扩展到多任务模式并构建高性能模型,将强化学习(RL)代理与GAN结合,构建多任务图像生成RL-GAN模型,并通过更换RL代理训练算法、设置更合理的AC网络损失函数及替换网络结构三个方面进行优化,旨在提升模型性能。实验结果显示,在两种多任务图像修复实验中,所提模型的生成结果均满足视觉需求,且与当前多任务模式的主流方法--多GAN叠加相比,RL-GAN模型具有更快的收敛速度和图像处理速度以及更高的输出质量,且引入RL代理后模型的精度与效率也更优,优化后的模型多任务处理能力显著提升。 展开更多
关键词 多任务图像生成 强化学习 生成对抗网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部