期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于情感词和多任务卷积神经网络的文本情感分布学习 被引量:4
1
作者 江晨琳 曾雪强 +3 位作者 郭小奉 东雨畅 左家莉 王明文 《中文信息学报》 CSCD 北大核心 2023年第4期126-136,共11页
不同于传统的情感分析范式,情感分布学习采用与示例关联的情感分布对多种情绪进行定量建模,可以较好地处理具有情绪模糊性的情感分析任务。针对现有情感分布学习方法缺乏考虑文本分析任务特有的情感词语言学先验知识的问题,该文提出一... 不同于传统的情感分析范式,情感分布学习采用与示例关联的情感分布对多种情绪进行定量建模,可以较好地处理具有情绪模糊性的情感分析任务。针对现有情感分布学习方法缺乏考虑文本分析任务特有的情感词语言学先验知识的问题,该文提出一种基于情感词和多任务卷积神经网络(Lexicon enhanced Multi-Task Convolutional Neural Network,LMT-CNN)的文本情感分布学习模型,用于预测文本的情感分布和情绪标签。LMT-CNN模型的网络结构由文本语义信息模块、情感词的情感知识模块和多任务预测模块组成,采用端到端方式进行模型训练和预测。在7个常用的文本情感数据集上的对比实验结果表明,LMT-CNN模型具有比已有的情感分布学习方法更优的情感分布预测和情绪分类性能。 展开更多
关键词 情感分布学习 文本情绪分析 情感词 多任务卷积神经网络
在线阅读 下载PDF
基于情感轮和多任务卷积神经网络的图像情感分布学习 被引量:4
2
作者 赖金水 万中英 曾雪强 《江西师范大学学报(自然科学版)》 CAS 北大核心 2022年第4期363-371,共9页
图像情感分布学习可以对多种情绪同时进行建模,但现有的模型缺乏有效的方法直接考虑情绪之间的相关性.针对这一问题,该文提出一种基于情感轮和多任务卷积神经网络(EW-MTCNN)的图像情感分布学习模型,通过先验知识模块将心理学情感知识直... 图像情感分布学习可以对多种情绪同时进行建模,但现有的模型缺乏有效的方法直接考虑情绪之间的相关性.针对这一问题,该文提出一种基于情感轮和多任务卷积神经网络(EW-MTCNN)的图像情感分布学习模型,通过先验知识模块将心理学情感知识直接引入到深度神经网络中.基于Mikel′s情感轮定义成对情绪之间的相关性,EW-MTCNN模型采用多任务卷积神经网络学习情绪之间的相关性信息,同时优化情感分布预测和情绪分类任务.EW-MTCNN模型由3个模块组成,3个模块分别是图像特征提取层、情感轮先验知识层和多任务损失层.在情感分布数据集(Emotion6)和单标签数据集(Artphoto)上进行对比实验的结果表明:EW-MTCNN模型在情感分布预测与情绪分类任务上比其他情感分布学习方法具有更优的性能. 展开更多
关键词 Mikel′s情感轮 多任务卷积神经网络 情感分布学习 情绪分类 标记分布学习
在线阅读 下载PDF
面向AR-HUD的多任务卷积神经网络研究 被引量:6
3
作者 冯明驰 卜川夏 萧红 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第3期241-250,共10页
汽车上AR-HUD已经得到了广泛应用,其环境感知模块需完成目标检测、车道分割等多个任务,但是多个深度神经网络同时运行会消耗过多的计算资源。针对这一问题,本文提出一种应用于AR-HUD环境感知的轻量级多任务卷积神经网络DYPNet,其以YOLOv... 汽车上AR-HUD已经得到了广泛应用,其环境感知模块需完成目标检测、车道分割等多个任务,但是多个深度神经网络同时运行会消耗过多的计算资源。针对这一问题,本文提出一种应用于AR-HUD环境感知的轻量级多任务卷积神经网络DYPNet,其以YOLOv3-tiny框架为基础,融合金字塔池化模型、DenseNet的密集连接结构、CSPNet网络模型的思想,在精度未下降的情况下大幅减少了计算资源消耗。针对该神经网络难以训练的问题,提出了一种基于动态损失权重的线性加权求和损失函数,使子网络损失值趋于同步下降,且同步收敛。经过在公开数据集BDD100K上训练及测试,结果表明该神经网络的检测mAP和分割mIOU分别为30%,77.14%,使用TensorRt加速后,在Jetson TX2上已经可以达到15 frame·s-1左右,已达到AR-HUD的应用要求,并成功应用于车载AR-HUD。 展开更多
关键词 增强现实抬头显示器 多任务卷积神经网络 目标检测 语义分割
在线阅读 下载PDF
基于深度卷积神经网络的地震震相拾取方法研究 被引量:23
4
作者 李健 王晓明 +3 位作者 张英海 王卫东 商杰 盖磊 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2020年第4期1591-1606,共16页
地震震相拾取是地震数据自动处理的首要环节,包括了信号检测、到时估计和震相识别等过程,震相拾取的准确性直接影响到后续事件关联处理的性能,影响观测报告的质量.为了提高震相拾取的准确性,进而提高观测报告质量,本文采用深度卷积神经... 地震震相拾取是地震数据自动处理的首要环节,包括了信号检测、到时估计和震相识别等过程,震相拾取的准确性直接影响到后续事件关联处理的性能,影响观测报告的质量.为了提高震相拾取的准确性,进而提高观测报告质量,本文采用深度卷积神经网络方法来解决震相拾取问题,构建了多任务卷积神经网络模型,设计了分类和回归的联合损失函数,定义了基于加权的分类损失函数,以三分量地震台站的波形数据作为输入,同时实现对震相的检测识别和到时的精确估计.利用美国南加州地震台网的200万条震相和噪声数据对模型进行训练、验证和测试,对于测试集中直达波P、S震相识别的查全率达到98%以上,到时估计的标准偏差分别为0.067s,0.082s.利用迁移学习和数据增强,将模型用于对我国东北地区台网的6个台站13000条数据的训练、验证和测试中,对该数据集P、S震相查全率分别达到91.21%、85.65%.基于迁移训练后的模型,设计了用于连续数据的震相拾取方法,利用连续的地震数据对该算法进行了实际应用测试,并与国家数据中心和中国地震局的观测报告进行比对,该方法的震相检测识别率平均可达84.5%,验证了该方法在实际应用中的有效性.本文所提出的方法展示了深度神经网络在地震震相拾取中的优异性能,为地震震相和事件的检测识别提供了新的思路. 展开更多
关键词 多任务卷积神经网络 震相拾取 联合损失函数 迁移学习
在线阅读 下载PDF
基于深度卷积神经网络的蝇类面部识别 被引量:13
5
作者 陈彦彤 陈伟楠 +2 位作者 张献中 李雨阳 王俊生 《光学精密工程》 EI CAS CSCD 北大核心 2020年第7期1558-1567,共10页
针对蝇类昆虫物种繁多、特征复杂等因素,导致蝇类识别准确率低、耗时较长等问题。本文借鉴深度学习方法中的人脸识别算法,提出一种基于深度卷积神经网络的蝇类面部识别方法。首先,在图像对齐过程中,使用多任务卷积神经网络并进行优化即... 针对蝇类昆虫物种繁多、特征复杂等因素,导致蝇类识别准确率低、耗时较长等问题。本文借鉴深度学习方法中的人脸识别算法,提出一种基于深度卷积神经网络的蝇类面部识别方法。首先,在图像对齐过程中,使用多任务卷积神经网络并进行优化即应用深度可分离卷积减少计算参数,缩短图像预处理时间。其次,应用轮廓特征粗提取和具体部位特征细提取相结合的方式提取更加丰富的特征信息即使用卷积池化粗提取出图像的轮廓特征值;同时,使用Inception-ResNet网络、Reduction网络细提取出具体部位特征值。最终在网络训练时,结合上述方法使得提取到的特征信息更加精确全面。实验表明,所提方法的准确率达到94.03%,相较于其他网络训练方法,该方法在保证较高准确率的情况下提升计算效率。 展开更多
关键词 蝇类面部识别 深度卷积神经网络 多任务卷积神经网络 Inception-ResNet网络 Reduction网络
在线阅读 下载PDF
基于深度卷积判别网络的人脸比对方法 被引量:1
6
作者 谷凤伟 陆军 +1 位作者 刘子玄 蔡成涛 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1770-1782,共13页
针对实际应用中人脸比对面临着场景复杂性高、光照、遮挡等问题,为了提高人脸比对准确率,本文提出了一种基于深度卷积判别网络的人脸比对算法MTC-FaceNetSDM。建立了MTC-FaceNetSDM的深度卷积神经网络,在FaceNet网络前端中融合多任务级... 针对实际应用中人脸比对面临着场景复杂性高、光照、遮挡等问题,为了提高人脸比对准确率,本文提出了一种基于深度卷积判别网络的人脸比对算法MTC-FaceNetSDM。建立了MTC-FaceNetSDM的深度卷积神经网络,在FaceNet网络前端中融合多任务级联卷积神经网络得到MTC-FaceNet网络,实现实际场景中的人脸检测提取目标人脸;利用深度卷积神经网络获取高维人脸深度特征,并将FaceNet网络的欧氏距离模块替换为所提出的相似度判别模块SDM,用于高维人脸特征向量比对;最终,利用自制的人脸数据集C-facev1,结合CASIA-WebFace人脸数据集对本文人脸比对算法进行训练,使用人脸数据集LFW和CASIA-FaceV5对训练后的模型进行性能评估。实验结果表明:本文所设计的MTC-FaceNetSDM的人脸比对准确率比MTC-FaceNet整体提高1.48%,对中国人脸比对准确率提高3.80%,可实现多人种的人脸比对,同时该算法具备良好的鲁棒性和泛化能力,达到优良的人脸比对效果,可实际应用于人脸验证系统。 展开更多
关键词 人脸比对 深度卷积判别网络 多任务级联卷积神经网络 相似度判别模块 人脸特征向量
在线阅读 下载PDF
基于多任务Faster R-CNN车辆假牌套牌的检测方法 被引量:7
7
作者 陈朋 汤一平 +2 位作者 何霞 王辉 袁公萍 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第12期3079-3089,共11页
针对现有车辆假牌套牌各种检测方法存在计算复杂度高、检测精度低、鲁棒性欠缺等问题,提出一种基于多任务的高速区域卷积神经网络(Faster R-CNN)车辆假牌套牌的检测方法。首先利用时空约束得到疑似套牌车辆,接着用Faster R-CNN定位分割... 针对现有车辆假牌套牌各种检测方法存在计算复杂度高、检测精度低、鲁棒性欠缺等问题,提出一种基于多任务的高速区域卷积神经网络(Faster R-CNN)车辆假牌套牌的检测方法。首先利用时空约束得到疑似套牌车辆,接着用Faster R-CNN定位分割出车辆前脸部分图像,然后对疑似套牌车辆的车脸公脸部分(车辆的基本特征)的特征进行比对;在此基础上再对高仿套牌车辆的车脸私脸部分(车检标)的细微特征进行检测比对。这种分层次的、从车辆宏观特征到微观特征的视觉检测方法,具有检测速度快、鲁棒性高、泛化能力强、实施部署方便、检测精度高等优点。实验研究表明,在Vehicle ID数据集和杭州卡口数据集中分别取得了99.39%、99.22%的检测精度。 展开更多
关键词 车辆假牌套牌检测 多任务高速区域卷积神经网络 车辆脸部特征 分层特征比对
在线阅读 下载PDF
面向人脸检测MTCNN网络的加速硬件设计 被引量:3
8
作者 孙庆斌 何虎 《计算机工程与设计》 北大核心 2022年第2期370-375,共6页
为加快深度学习人脸检测算法MTCNN(multi-task convolu tion neural network)的推理速度,满足许多应用场合检测的实时性的要求,基于Xilinx FPGA ZCU102开发板设计针对MTCNN专门优化的卷积和全连接加速硬件。该加速硬件不仅适用于MTCNN网... 为加快深度学习人脸检测算法MTCNN(multi-task convolu tion neural network)的推理速度,满足许多应用场合检测的实时性的要求,基于Xilinx FPGA ZCU102开发板设计针对MTCNN专门优化的卷积和全连接加速硬件。该加速硬件不仅适用于MTCNN网络,其它神经网络推理算法也可以使用。针对算法特点,硬件采用小而多的计算核心,支持动态分块、图像间混合计算、片上多核共享RAM等完全自主开发的软硬件协同技术。在100 MHZ的频率下对MTCNN应用在加速器上的加速效果进行测试并和ARM程序进行对比,可以得到加速器相对于ARM O2速度加快了6倍多。 展开更多
关键词 多任务卷积神经网络 卷积 全连接 加速硬件 人脸检测 软硬件协同
在线阅读 下载PDF
facenet皮尔森判别网络的人脸识别方法 被引量:12
9
作者 谷凤伟 陆军 夏桂华 《智能系统学报》 CSCD 北大核心 2022年第1期107-115,共9页
非限制场景下存在光照、遮挡和姿态变化等问题,这严重影响了人脸识别模型的性能和准确度。针对该问题,本文对facenet进行改进,提出了一种基于facenet皮尔森判别网络的人脸识别方法facenetPDN。首先,构建facenetPDN深度卷积神经网络,在fa... 非限制场景下存在光照、遮挡和姿态变化等问题,这严重影响了人脸识别模型的性能和准确度。针对该问题,本文对facenet进行改进,提出了一种基于facenet皮尔森判别网络的人脸识别方法facenetPDN。首先,构建facenetPDN深度卷积神经网络,在facenet前端融合多任务级联卷积神经网络进行人脸检测提取目标人脸。然后,通过深度神经网络提取人脸深度特征信息,采用皮尔森相关系数判别模块替换facenet中的欧氏距离判别模块实现人脸深度特征判别。最后,使用CASIA-WebFace和CASIA-FaceV5人脸数据集训练网络。为了证明本文方法的有效性,训练后的模型在LFW和celeA人脸数据集进行测试和评估,并进行对比分析。实验结果表明,改进后的facenetPDN方法的准确度比原来整体提高了1.34%,在融合训练集下提高了0.78%,该算法鲁棒性和泛化能力优良,可实现多人种的人脸识别,对非限制场景下人脸目标具有良好的识别效果。 展开更多
关键词 非限制场景 人脸识别 facenet 多任务级联卷积神经网络 人脸检测 皮尔森相关系数 欧氏距离 人脸数据集
在线阅读 下载PDF
基于时频空多维融合特征的脑电情感识别 被引量:2
10
作者 杜扶遥 姜囡 刘浠辰 《科学技术与工程》 北大核心 2024年第18期7769-7775,共7页
脑电信号(electroencephalogram,EEG)包含丰富的时间,空间和频率信息,是最能准确反映情感状态的生理信号,在情感识别领域发挥着重要作用。由于单特征的脑电情感识别研究方法存在缺失信息的问题,因此提出了三维融合特征的脑电信息处理方... 脑电信号(electroencephalogram,EEG)包含丰富的时间,空间和频率信息,是最能准确反映情感状态的生理信号,在情感识别领域发挥着重要作用。由于单特征的脑电情感识别研究方法存在缺失信息的问题,因此提出了三维融合特征的脑电信息处理方法,将脑电信号的微分熵频域特征和8种时域特征进行融合,并按照电极片位置信息进行空间排布,构建脑电信号的三维融合特征。将注意力机制引入多任务卷积神经网络(multi task attention convolutional neural network,MTA-CNN),并将构造的三维特征作为输入进行测试分析。结果表明,所提出模型方法在DEAP数据集的效价维和唤醒维二分类问题准确率均有显著提升。 展开更多
关键词 脑电信号 情感识别 三维融合特征 注意力机制 多任务卷积神经网络
在线阅读 下载PDF
基于图像识别的带式输送机输煤量和跑偏检测方法 被引量:38
11
作者 韩涛 黄友锐 +3 位作者 张立志 徐善永 许家昌 鲍士水 《工矿自动化》 北大核心 2020年第4期17-22,共6页
传统的卷积神经网络(CNN)是单任务网络,为实现带式输送机输煤量和跑偏的同时检测,使用2个卷积神经网络分别对输煤量和跑偏进行检测,导致网络体积大、参数多、计算量大、运行时间长,严重影响检测性能.为降低网络结构的复杂性,提出了一种... 传统的卷积神经网络(CNN)是单任务网络,为实现带式输送机输煤量和跑偏的同时检测,使用2个卷积神经网络分别对输煤量和跑偏进行检测,导致网络体积大、参数多、计算量大、运行时间长,严重影响检测性能.为降低网络结构的复杂性,提出了一种基于多任务卷积神经网络(MT-CNN)的带式输送机输煤量和跑偏检测方法,可使输煤量检测和跑偏检测这2个任务共享同一个网络底层结构和参数.在VGGNet模型的基础上,增大卷积核和池化核的尺度,减少全连接层通道数量,改变输出层结构,构建了MT-CNN;对采集的输送带图像进行灰度化、中值滤波和提取感兴趣区域等预处理后,获取训练数据集和测试数据集,并对MT-CNN进行训练;使用训练好的MT-CNN对输送带图像进行识别分类,实现输煤量和跑偏的准确、快速检测.实验结果表明,训练后的MT-CNN在测试数据集中检测准确率为97.3%,平均处理每张图像的时间约为23.1 ms.通过现场实际运行验证了该方法的有效性. 展开更多
关键词 带式输送机 输煤量检测 跑偏检测 图像识别 多任务卷积神经网络
在线阅读 下载PDF
基于边缘计算的疲劳驾驶检测方法 被引量:14
12
作者 娄平 杨欣 +2 位作者 胡辑伟 萧筝 严俊伟 《计算机工程》 CAS CSCD 北大核心 2021年第7期13-20,29,共9页
现有疲劳驾驶检测方法通常将驾驶过程中采集的数据传输至云端进行分析,然而在车辆移动过程中网络覆盖范围、响应速度等因素会造成检测实时性差。为在车载嵌入式设备上对驾驶人疲劳状态进行准确预警,提出一种基于边缘计算的疲劳驾驶检测... 现有疲劳驾驶检测方法通常将驾驶过程中采集的数据传输至云端进行分析,然而在车辆移动过程中网络覆盖范围、响应速度等因素会造成检测实时性差。为在车载嵌入式设备上对驾驶人疲劳状态进行准确预警,提出一种基于边缘计算的疲劳驾驶检测方法。通过改进的多任务卷积神经网络确定人脸区域,根据人脸的面部比例关系定位驾驶人的眼部与嘴部区域,利用基于Ghost模块的轻量化AlexNet分类检测眼部与嘴部的开闭状态,并结合PERCLOS和PMOT指标值实现疲劳检测。在NHTU-DDD数据集上的实验结果表明,该方法在树莓派4B开发板上的检测准确率达到93.5%且单帧平均检测时间为180 ms,在保障检测准确率的同时大幅降低了计算量,能较好地满足疲劳驾驶的实时检测需求。 展开更多
关键词 疲劳驾驶检测 边缘计算 多任务卷积神经网络 轻量化 AlexNet结构
在线阅读 下载PDF
基于深度学习的司机疲劳驾驶检测方法研究 被引量:20
13
作者 李小平 白超 《铁道学报》 EI CAS CSCD 北大核心 2021年第6期78-87,共10页
针对传统基于机器视觉的司机疲劳检测模型对硬件系统要求较高、检测准确率和效率较低等问题,提出一种基于MTCNN-PFLD-LSTM深度学习模型的疲劳驾驶检测算法。通过多任务卷积神经网络MTCNN进行人脸区域检测;利用PFLD模型检测人脸眼部、嘴... 针对传统基于机器视觉的司机疲劳检测模型对硬件系统要求较高、检测准确率和效率较低等问题,提出一种基于MTCNN-PFLD-LSTM深度学习模型的疲劳驾驶检测算法。通过多任务卷积神经网络MTCNN进行人脸区域检测;利用PFLD模型检测人脸眼部、嘴部和头部的关键点及空间姿态角;计算出基于时间序列的人脸疲劳特征参数矩阵并输入长短期记忆网络LSTM进行疲劳驾驶检测,通过优化设计不同阶段损失函数及其权重,进一步提高检测能力。在未采用GPU加速的情况下,通过YawDD数据集与自采数据集进行试验并与最新的8种方法进行比较,准确率和检测帧率分别达到99.22%和46,准确率比未采用GPU加速试验中性能第2的模型增加了0.26%,检测帧率比未采用GPU加速试验中性能第2的模型增加了1.3倍。试验结果表明,提出的方法可以提高疲劳检测的准确度和效率,并可在移动设备等低算力设备上应用。 展开更多
关键词 多任务卷积神经网络MTCNN 长短期记忆人工神经网络LSTM 深度学习 疲劳驾驶检测
在线阅读 下载PDF
基于活体检测和身份认证的人脸识别安防系统 被引量:15
14
作者 陈放 刘晓瑞 杨明业 《计算机应用》 CSCD 北大核心 2020年第12期3666-3672,共7页
人脸识别由于其便捷性和实用性而被广泛应用于各种门禁等场合,但容易受到多种形式的欺骗攻击(如照片攻击和视频攻击)。基于深度卷积神经网络(CNN)的活体检测虽然能够解决以上问题,但是却存在计算量大、对用户不友好以及难以部署于嵌入... 人脸识别由于其便捷性和实用性而被广泛应用于各种门禁等场合,但容易受到多种形式的欺骗攻击(如照片攻击和视频攻击)。基于深度卷积神经网络(CNN)的活体检测虽然能够解决以上问题,但是却存在计算量大、对用户不友好以及难以部署于嵌入式系统等缺点,因此提出了一种实时的轻量级的人脸识别安全分类方法。通过将基于色彩纹理分析的人脸活体检测算法与人脸认证算法相融合,提出了一种在无需用户配合的单目摄像头场景下进行人脸活体检测和人脸验证的人脸识别算法。该算法支持实时人脸识别,具有更高的活体检测识别率与鲁棒性。为了验证该算法的性能,以CASIA-FASD和Replay-Attack作为实验的基准数据集,结果表明在活体检测中该算法的半错误率(HTER)为9.7%,等错误率(EER)为5.5%,而且在整个流程中处理1帧图像所需时间为0.12 s,验证了该算法的可行性和有效性。 展开更多
关键词 人脸识别 活体检测 轻量级神经网络 实时检测 安防系统 多任务卷积神经网络 色彩纹理分析 FaceNet
在线阅读 下载PDF
基于MTCNN算法的单目视觉车距检测方法 被引量:4
15
作者 丁柏群 李敬宇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期139-144,共6页
单目视觉检测系统结构简单、成本低廉、检测方便快捷、实时性好,但检测精度相对多目视觉系统较低,高度依赖计算方法。目前采用单目视觉的车辆测距方法没有充分考虑多尺度车辆导致的误差问题,使其检测精度受到影响。建立一种基于多任务... 单目视觉检测系统结构简单、成本低廉、检测方便快捷、实时性好,但检测精度相对多目视觉系统较低,高度依赖计算方法。目前采用单目视觉的车辆测距方法没有充分考虑多尺度车辆导致的误差问题,使其检测精度受到影响。建立一种基于多任务级联卷积神经网络(MTCNN)的车距检测方法,以车辆号牌作为靶标,利用单目摄像头采集前车图像,采用MTCNN算法检测车牌,获取车牌角点坐标,依据P4P原理计算车辆间距。该方法与车型大小、道路起伏无关,仅与车牌图像识别测算质量相关,可以有效减少其它因素导致的误差。试验表明,提出的车辆测距方法通过MTCNN和P4P算法分析计算前车视频图像,实现了较高精度的车距检测,对27 m范围内的车距检测平均误差为2.77%,其中3~27 m的检测平均误差为2.52%,在较大测距范围内具有较高的稳定性。 展开更多
关键词 交通运输工程 单目视觉 车辆测距 多任务级联卷积神经网络 P4P算法 图像识别
在线阅读 下载PDF
基于深度学习的轻量级和多姿态人脸识别方法 被引量:28
16
作者 龚锐 丁胜 +1 位作者 章超华 苏浩 《计算机应用》 CSCD 北大核心 2020年第3期704-709,共6页
目前基于深度学习的人脸识别方法存在识别模型参数量大、特征提取速度慢的问题,而且现有人脸数据集姿态单一,在实际人脸识别任务中无法取得好的识别效果。针对这一问题建立了一种多姿态人脸数据集,并提出了一种轻量级的多姿态人脸识别... 目前基于深度学习的人脸识别方法存在识别模型参数量大、特征提取速度慢的问题,而且现有人脸数据集姿态单一,在实际人脸识别任务中无法取得好的识别效果。针对这一问题建立了一种多姿态人脸数据集,并提出了一种轻量级的多姿态人脸识别方法。首先,使用多任务级联卷积神经网络(MTCNN)算法进行人脸检测,并且使用MTCNN最后包含的高层特征做人脸跟踪;然后,根据检测到的人脸关键点位置来判断人脸姿态,通过损失函数为ArcFace的神经网络提取当前人脸特征,并将当前人脸特征与相应姿态的人脸数据库中的人脸特征比对得到人脸识别结果。实验结果表明,提出方法在多姿态人脸数据集上准确率为96.25%,相较于单一姿态的人脸数据集,准确率提升了2.67%,所提方法能够有效提高识别准确率。 展开更多
关键词 深度学习 人脸识别 多姿态 轻量级 多任务级联卷积神经网络 ArcFace
在线阅读 下载PDF
基于眼睛状态识别的疲劳驾驶检测 被引量:18
17
作者 徐莲 任小洪 陈闰雪 《科学技术与工程》 北大核心 2020年第20期8292-8299,共8页
由于光照变化、头部姿态等因素的影响,现有的疲劳驾驶检测精度仍有待提高。针对该问题,提出一种基于迁移学习的眼睛状态识别网络(Gabor and LBP-convolutional neural networks,GL-CNN),该网络是由Gabor特征和LBP特征通过迁移学习加入... 由于光照变化、头部姿态等因素的影响,现有的疲劳驾驶检测精度仍有待提高。针对该问题,提出一种基于迁移学习的眼睛状态识别网络(Gabor and LBP-convolutional neural networks,GL-CNN),该网络是由Gabor特征和LBP特征通过迁移学习加入卷积神经网络(convolutional neural networks, CNN)调制组成的。首先用多任务级联卷积神经网络(multi-task CNN,MTCNN)检测驾驶员的人脸和双眼,然后经过眼睛筛选机制获取待检测的单只眼睛,通过GL-CNN识别眼睛的睁闭状态,最后根据PERCLOSE准则判断驾驶员的疲劳状态。实验结果表明,该算法具有较高的准确率,可以检测多种姿态眼睛的状态,同时满足实时性的要求。 展开更多
关键词 疲劳驾驶检测 迁移学习 眼睛筛选机制 多任务级联卷积神经网络 眼部状态识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部