期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于多任务分类的吸烟行为检测 被引量:14
1
作者 程淑红 马晓菲 +1 位作者 张仕军 张丽 《计量学报》 CSCD 北大核心 2020年第5期538-543,共6页
为了及时检测吸烟行为,准确做出状态判断,提出了一种基于多任务分类的吸烟行为检测算法。该算法融合多任务卷积神经网络、级联回归和残差网络,通过多任务卷积神经网络算法和基于梯度提高学习的回归树方法(RET级联回归)快速定位嘴部感兴... 为了及时检测吸烟行为,准确做出状态判断,提出了一种基于多任务分类的吸烟行为检测算法。该算法融合多任务卷积神经网络、级联回归和残差网络,通过多任务卷积神经网络算法和基于梯度提高学习的回归树方法(RET级联回归)快速定位嘴部感兴趣区域(ROI);在此基础上,采用残差网络对ROI内目标进行检测和状态识别。实验结果表明,该算法可以准确检测到吸烟行为的发生并做出状态判断,准确率可以达到87. 5%。 展开更多
关键词 计量学 吸烟行为检测 多任务分类 卷积神经网络 级联回归 残差网络 感兴趣区域 人脸识别
在线阅读 下载PDF
面向类不均衡数据的多任务博弈概率分类向量机 被引量:1
2
作者 潘海洋 李丙新 +1 位作者 郑近德 童靳于 《机电工程》 CAS 北大核心 2024年第3期430-437,共8页
在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了... 在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了博弈因子,将不同类样本质心间的博弈信息赋予每个样本特定的样本质心敏感值,以解决传统分类器对不平衡数据集分类表现较差的问题;然后,在贝叶斯框架理论下,采用截断高斯先验分布的方法,使样本参数的正负与对应的标签信息相一致,且使样本质心敏感值产生了稀疏估计;最后,将MGPCVM方法应用于两种不同实验平台采集的滚动轴承实验数据处理,进行了故障诊断有效性验证。研究结果表明:在不同的不平衡比(IR)下,MGPCVM方法的准确率均保持在95%以上,相对于支持向量机(SVM)、概率分类向量机(PCVM)等方法提升了4%~8%;与典型向量式分类方法相比,MGPCVM方法可以在不平衡数据条件下表现出优越的分类性能,适用于实际工况中数据失衡的分类问题。 展开更多
关键词 滚动轴承 故障诊断 多任务博弈概率分类向量机 支持向量机 概率分类向量机 不均衡比 故障分类模型
在线阅读 下载PDF
多任务垃圾智能分拣试验装置设计
3
作者 吴燕燕 包梓含 +1 位作者 汪凌志 宋肽宇 《机械设计》 北大核心 2025年第S1期121-125,共5页
针对传统智能垃圾桶主要解决单个垃圾投入时的分类问题,对于多个垃圾同时投入的分类难以实现。因此,设计了一款基于改进YOLOv5和移动机械爪的多任务垃圾智能分拣装置。该装置包括顶端设置垃圾投放口的分拣箱箱体、垃圾分拣设备(二维滑... 针对传统智能垃圾桶主要解决单个垃圾投入时的分类问题,对于多个垃圾同时投入的分类难以实现。因此,设计了一款基于改进YOLOv5和移动机械爪的多任务垃圾智能分拣装置。该装置包括顶端设置垃圾投放口的分拣箱箱体、垃圾分拣设备(二维滑台、机械手爪)、4个垃圾桶(用于存储各类垃圾)、摄像头、视觉开发板、Arduino控制器;添加规范化注意力模块(normalization-based attention module,NAM)改进YOLOv5模型,将改进模型部署在视觉平台JetsonNano上,利用摄像头捕获垃圾图像,并将识别结果和定位坐标传输至Arduino控制器;控制器根据接收到的垃圾坐标值控制垃圾分拣设备,将垃圾投入箱体下方对应垃圾桶。该装置利用人工智能技术实现了常见生活垃圾的智能分类,并配合二维滑台控制机械手爪运动,解决了多个垃圾同时投入时的分类问题。 展开更多
关键词 多任务垃圾分类 二维滑台 机械手爪 ARDUINO YOLOv5+NAM
在线阅读 下载PDF
基于逻辑回归的多任务域快速分类学习算法 被引量:5
4
作者 顾鑫 曹丹华 +2 位作者 吴裕斌 栾永昕 王伟成 《计算机工程与应用》 CSCD 北大核心 2017年第15期47-56,205,共11页
多任务学习通过寻找并共享不同任务域之间的共性特征来完成学习,利用知识迁移加速不同任务域的学习为每个任务域构建一个分类器。提出了一种基于罗杰斯特回归模型的多任务学习方法 MTC-LR(Multi-task Coupled Logistic Regression)。&qu... 多任务学习通过寻找并共享不同任务域之间的共性特征来完成学习,利用知识迁移加速不同任务域的学习为每个任务域构建一个分类器。提出了一种基于罗杰斯特回归模型的多任务学习方法 MTC-LR(Multi-task Coupled Logistic Regression)。"罗杰斯特回归模型"已经被成功应用于单任务分类器上,该模型被众多实验证明是有效的,正是这种方法给人们带来了启示。从理论上证明了通过构造多任务分类器的"开销函数"和"差异性度量函数",MTC-LR算法可以提高多任务分类器的各自分类精度。相比传统的基于SVM的多任务学习方法,MTC-LR并不依赖于核方法而是通过共轭梯度下降法寻找各个分类器的最优参数。同时MTC-LR与采用"罗杰斯特回归模型"的快速算法CDdual更容易结合,可扩展至大样本的多任务分类学习。正是基于上述发现,为了充分高效利用大样本的多任务域数据,满足大样本的快速运算,在MTC-LR算法的基础上,结合最新的CDdual(The Dual Coordinate Descent Method)算法,提出了MTC-LR的快速算法MTC-LR-CDdual,并对该算法进行了相关的理论分析。将该算法在人工数据集和真实数据集上进行了验证,实验结果表明该算法有着较高的识别率、快速的识别速度和较好的鲁棒性。 展开更多
关键词 多任务分类 罗杰斯特回归 后验概率 对偶坐标下降法
在线阅读 下载PDF
基于协同表示的声振传感器网络车辆分类识别 被引量:2
5
作者 王瑞 刘宾 +1 位作者 周天润 杨羽 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第1期103-110,共8页
针对使用单一信号分类的现有车辆识别技术的不足,提出了一种基于声音信号与振动信号协同表示的车辆分类识别方法.利用梅尔倒谱系数(MFCC)提取车辆的声音信号和振动信号特征,分别对提取的2种信号特征进行多任务训练分类,以获得多任务协... 针对使用单一信号分类的现有车辆识别技术的不足,提出了一种基于声音信号与振动信号协同表示的车辆分类识别方法.利用梅尔倒谱系数(MFCC)提取车辆的声音信号和振动信号特征,分别对提取的2种信号特征进行多任务训练分类,以获得多任务协同表示的重构误差并对其进行加权处理,得出被检测目标的分类识别结果.结果表明,所提出的车辆分类识别方法对于车辆目标具有较好的分类效果和较高的识别效率. 展开更多
关键词 车辆识别 协同表示 多任务分类 特征提取 重构误差
在线阅读 下载PDF
基于1DCNN融合多源表型数据的杨树干旱胁迫评估方法 被引量:2
6
作者 张慧春 周子阳 +3 位作者 边黎明 周磊 邹义萍 田野 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期286-296,共11页
目前关于不同杨树品种抗旱性的研究主要集中在利用传统测量方法获取形态结构和生理生化表型参数进而分析杨树的抗旱性,依据多源成像传感器提取的表型参数指标确定杨树干旱胁迫等级的方法较为少见。为了阐明杨树耐旱的表型机制、筛选抗... 目前关于不同杨树品种抗旱性的研究主要集中在利用传统测量方法获取形态结构和生理生化表型参数进而分析杨树的抗旱性,依据多源成像传感器提取的表型参数指标确定杨树干旱胁迫等级的方法较为少见。为了阐明杨树耐旱的表型机制、筛选抗旱性树种和明确杨树抗旱等级,本文以杨树不同性别的喜水和耐旱品种为研究对象,在杨树苗期进行梯度干旱胁迫处理,通过热红外以及RGB多源成像传感器获取杨树冠层温度参数与颜色植被指数表型数据,并建立基于1DCNN的多任务分类模型划分杨树苗期品种抗旱等级与干旱胁迫等级等2个分类任务,探究杨树性别与生长时间对杨树干旱胁迫响应机制的影响。结果表明,以27组数据变量降维后的4个特征作为模型变量,与传统机器学习算法SVM、RF、XGBoost相比,本文提出的1DCNN多任务分类模型在杨树品种抗旱等级分类与单株干旱胁迫等级分类2个任务中的模型分类精度皆达到最优,分类准确率分别为81.8%和62.3%;引入杨树的性别和生长时间后共6个特征作为模型的输入变量后,杨树苗期品种抗旱等级与干旱胁迫等级的分类精度显著提高,1DCNN多任务分类模型在2个分类任务中的准确率分别达到93.5%与76.6%,模型分类准确率分别提高11.7个百分点与14.3个百分点。研究结果表明,通过热红外与RGB成像传感器获取多源表型数据,并建立1DCNN多任务分类模型对实现杨树干旱胁迫等级评估的可行性,同时表明杨树的性别和生长时间作为模型输入变量能够有效提升模型的分类精度,可为筛选杨树抗旱性品种提供新的思路与方法。 展开更多
关键词 杨树 干旱胁迫 卷积神经网络 植物表型 多源表型数据 多任务分类模型
在线阅读 下载PDF
基于LSTM与注意力结构的肺结节多特征抽取方法 被引量:3
7
作者 倪扬帆 杨媛媛 +2 位作者 谢哲 郑德重 王卫东 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第8期1078-1088,共11页
对肺结节的形状特征、边缘特征和内部特征进行准确分类,能够辅助影像科医生的日常诊断工作,提高影像报告的书写效率.针对这一问题,提出一种基于长短时记忆(LSTM)结构与注意力结构的多任务分类模型.该模型通过注意力机制融合各个任务间... 对肺结节的形状特征、边缘特征和内部特征进行准确分类,能够辅助影像科医生的日常诊断工作,提高影像报告的书写效率.针对这一问题,提出一种基于长短时记忆(LSTM)结构与注意力结构的多任务分类模型.该模型通过注意力机制融合各个任务间的共享特征,提高当前任务的特征抽取效果.LSTM结构分类器能够有效地筛选任务间的共享特征,提高模型的信息传递效率.实验表明,相较于传统多任务结构,所提模型在公开数据集LIDC-IDRI上能够取得更好的多特征分类效果,辅助医生快捷地获取肺结节特征信息. 展开更多
关键词 肺结节 注意力结构 长短时记忆网络 多任务分类
在线阅读 下载PDF
基于自适应人脸切割的三维人脸识别算法 被引量:4
8
作者 邓星 达飞鹏 杨乔生 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第2期260-264,共5页
为克服表情变化对人脸识别的影响,提出了一种基于自适应人脸切割的三维人脸识别算法.首先,采用一种自动预处理技术来去除离群点、填补孔洞和归一化姿态,以提高三维人脸数据的质量;其次,通过简化meshSIFT特征的规范化方向并加入形状直径... 为克服表情变化对人脸识别的影响,提出了一种基于自适应人脸切割的三维人脸识别算法.首先,采用一种自动预处理技术来去除离群点、填补孔洞和归一化姿态,以提高三维人脸数据的质量;其次,通过简化meshSIFT特征的规范化方向并加入形状直径函数描述符,讨论了方向分配和特征描述符的设计问题,改进了meshSIFT特征;最后,通过运用字典构造、压缩与自适应区域切割稀疏分类,提出了一种基于多任务稀疏表示分类最小残差和的自适应人脸切割算法.FRGC v2.0人脸数据库上的实验分析结果表明,所提算法对三维人脸识别具有较高的识别率. 展开更多
关键词 三维人脸识别 自动预处理技术 改进的meshSIFT特征 自适应人脸切割 多任务稀疏表示分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部