期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多任务交互式学习网络的方面情感分析
1
作者 宋婷 潘理虎 陈战伟 《计算机工程与应用》 CSCD 北大核心 2022年第19期202-208,共7页
方面情感分析传统方法采用方面词抽取-情感预测的独立学习模式,未充分利用两模块的联合信息及训练过程中有价值的信息。提出基于消息传递机制的多任务交互式学习网络,模型采用细粒度属性级分类任务和篇章级分类任务联合训练,设计消息传... 方面情感分析传统方法采用方面词抽取-情感预测的独立学习模式,未充分利用两模块的联合信息及训练过程中有价值的信息。提出基于消息传递机制的多任务交互式学习网络,模型采用细粒度属性级分类任务和篇章级分类任务联合训练,设计消息传递显式地对任务交互进行建模,通过共享隐藏变量迭代传递信息,有助于特征学习和推理。方面情感分析模块提出词级信息交互机制以及观点词抽取——情感预测信息传递通道,实现双注意力机制;利用池化操作嵌入多层GRU网络实现篇章级任务预测。设计迭代算法在方面级和篇章级任务间交替训练,通过三个数据集上的实验对比,结果表明模型在每个子任务的F1分数、模型整体性能、篇章级任务网络性能上均得到有效提高。 展开更多
关键词 方面情感 多任务交互 消息传递机制 词级交互 双注意力
在线阅读 下载PDF
多任务特征交互的三元组抽取方法
2
作者 徐新黎 卢齐林 +3 位作者 杨旭华 黄玉娇 龙海霞 马钢峰 《小型微型计算机系统》 北大核心 2025年第6期1333-1341,共9页
从非结构化的文本中抽取实体关系三元组是构建大规模知识图谱的基础.由于实际抽取任务的数据标注往往是不平衡的,例如负样本的数量远超于正样本,或者简单样本的比例过高,导致模型训练易受到负样本或简单样本的支配.为了提高标注不平衡... 从非结构化的文本中抽取实体关系三元组是构建大规模知识图谱的基础.由于实际抽取任务的数据标注往往是不平衡的,例如负样本的数量远超于正样本,或者简单样本的比例过高,导致模型训练易受到负样本或简单样本的支配.为了提高标注不平衡的三元组抽取性能,提出一个基于多任务交互特征提取的联合优化框架.该框架首先扩展切分网络(PFN)完成3个子任务(主语识别,宾语识别和主宾对齐)的特征提取,使得3个子任务既能互相交互,又能专注于自己的任务.其次引入改进的Dice损失以解决主宾关联矩阵不平衡的问题,同时在联合优化中引入均方差不确定性,以减少各个子任务噪声的影响.实验结果表明,所提方法在数据集NYT和WebNLG上取得了最好的综合性能. 展开更多
关键词 三元组抽取 多任务交互 信息抽取 知识图谱
在线阅读 下载PDF
Interaction behavior recognition from multiple views 被引量:2
3
作者 XIA Li-min GUO Wei-ting WANG Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期101-113,共13页
This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature repr... This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words(BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition. 展开更多
关键词 local self-similarity descriptors graph shared multi-task learning composite interactive feature temporal-pyramid bag of words
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部